stzhao commited on
Commit
98f47b4
·
verified ·
1 Parent(s): 6cb1de7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +300 -57
app.py CHANGED
@@ -1,64 +1,307 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
 
64
  demo.launch()
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import sys
4
+ import os
5
+ import re
6
+ import json
7
+ import base64
8
+ from io import BytesIO
9
+ from PIL import Image
10
+ import argparse
11
+ from vis_python_exe import PythonExecutor
12
+ from openai import OpenAI
13
+ from typing import Optional, Union
14
+ import gradio as gr
15
+ import markdown
16
+
17
+ def encode_image(image):
18
+ """
19
+ 将PIL.Image对象或图像文件路径转换为base64编码字符串
20
+
21
+ 参数:
22
+ image: 可以是PIL.Image对象或图像文件路径
23
+
24
+ 返回:
25
+ base64编码的字符串
26
+ """
27
+ if isinstance(image, str):
28
+ # 处理文件路径的情况
29
+ with open(image, "rb") as image_file:
30
+ return base64.b64encode(image_file.read()).decode('utf-8')
31
+ else:
32
+ # 处理PIL.Image对象的情况
33
+ buffered = BytesIO()
34
+ image.save(buffered, format=image.format if hasattr(image, 'format') else 'PNG')
35
+ return base64.b64encode(buffered.getvalue()).decode('utf-8')
36
+
37
+ def excute_codes(codes, messages, executor: PythonExecutor):
38
+ no_code_idx = []
39
+ codes_use = []
40
+ for i, code in enumerate(codes):
41
+ if code == "":
42
+ no_code_idx.append(i)
43
+ else:
44
+ codes_use.append(code)
45
+ batch_results = executor.batch_apply(codes_use, messages)
46
+ return batch_results, no_code_idx
47
+
48
+ def process_prompt_init(question, image, prompt_template, prompt_type):
49
+ prompt_prefix = prompt_template[prompt_type]
50
+
51
+ image_base64 = encode_image(image)
52
+ question_with_options = question
53
+
54
+ messages = [
55
+ {
56
+ "role": "user",
57
+ "content": [{"type": "text", "text": "<image_clue_0>"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}] + [{"type": "text", "text": "</image_clue_0>\n\n"}] + [{"type": "text", "text": prompt_prefix.format(query=question_with_options)}]
58
+ }
59
+ ]
60
+
61
+ return messages
62
+
63
+ def update_messages_with_excu_content(messages, images_result, text_result, image_clue_idx):
64
+ new_messages = []
65
+ image_content = []
66
+ for message_item in messages[:-1]:
67
+ new_messages.append(message_item)
68
+
69
+ assistant_message_item = messages[-1]['content']
70
+ interpreter_message_text_prefix = [{"type": "text", "text": f"<interpreter>\nText Result:\n{text_result}\nImage Result:\n"}]
71
+ if images_result is not None:
72
+ for image_base64_item in images_result:
73
+ interpreter_message_images = [{"type": "text", "text": f"<image_clue_{image_clue_idx}>"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64_item}"}}] + [{"type": "text", "text": f"</image_clue_{image_clue_idx}>"}]
74
+ image_content += interpreter_message_images
75
+ image_clue_idx += 1
76
+ else:
77
+ image_content = [{"type": "text", "text": "None"}]
78
+ interpreter_message_text_profill = [{"type": "text", "text": "</interpreter>\n"}]
79
+
80
+ assistant_message_item = assistant_message_item + interpreter_message_text_prefix + image_content + interpreter_message_text_profill
81
+ new_messages.append({"role": "assistant", "content": assistant_message_item})
82
+ return new_messages, image_clue_idx
83
+
84
+
85
+
86
+ def update_messages_with_code(messages, generated_content):
87
+ message_item = {
88
+ "role": "assistant",
89
+ "content": [{"type": "text", "text": f"{generated_content}</code>\n"}]
90
+ }
91
+
92
+ messages.append(message_item)
93
+ return messages
94
 
95
+ def update_messages_with_text(messages, generated_content):
96
+ message_item = {
97
+ "role": "assistant",
98
+ "content": [{"type": "text", "text": f"{generated_content}"}]
99
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
+ messages.append(message_item)
102
+ return messages
103
 
104
+ def call_chatgpt_api(messages, client, max_tokens=10000, stop=None, temperature=1.1):
105
+ """Call ChatGPT API with the given messages"""
106
+ try:
107
+ response = client.chat.completions.create(
108
+ model="gpt-4.1", # 使用支持视觉的模型
109
+ messages=messages,
110
+ max_tokens=max_tokens,
111
+ temperature=temperature,
112
+ top_p=1.0,
113
+ stop=stop
114
+ )
115
+
116
+ response_text = response.choices[0].message.content
117
+
118
+ # 检查是否遇到停止标记
119
+ stop_reason = None
120
+ if stop and any(s in response_text for s in stop):
121
+ for s in stop:
122
+ if s in response_text:
123
+ stop_reason = s
124
+ break
125
+ else:
126
+ stop_reason = response.choices[0].finish_reason
127
+
128
+ if "<code>" in response_text:
129
+ stop_reason = "</code>"
130
+
131
+ return response_text, stop_reason
132
+
133
+ except Exception as e:
134
+ print(f"API Error: {str(e)}")
135
+ return None, None
136
+
137
+ def evaluate_single_data(data, client, executor, prompt_template, prompt_type):
138
+
139
+ messages = process_prompt_init(data["question"], data['image'], prompt_template, prompt_type)
140
+
141
+ # 生成初始响应
142
+ response_text, pred_stop_reason = call_chatgpt_api(
143
+ messages,
144
+ client,
145
+ max_tokens=10000,
146
+ stop=["</code>"]
147
+ )
148
+
149
+ if response_text is None:
150
+ print("Failed to get response from API")
151
+ return {
152
+ "input": data["question"],
153
+ "output": data["answer"],
154
+ "prediction": {
155
+ "solution": "API Error",
156
+ "correctness": False,
157
+ "code_execution_count": 0,
158
+ }
159
+ }
160
+
161
+ # 处理响应
162
+ final_response = response_text
163
+ code_execution_count = 0
164
+ image_clue_idx = 1
165
+
166
+ while True:
167
+ # 检查是否需要执行代码
168
+ if args.exe_code and pred_stop_reason == "</code>":
169
+ # 提取要执行的代码
170
+ messages = update_messages_with_code(messages, response_text)
171
+ code_to_execute = response_text.split("```python")[-1].split("```")[0].strip()
172
+
173
+ # 执行代码
174
+ exe_result = excute_codes([code_to_execute], messages, executor)[0][0]
175
+ if exe_result is None:
176
+ text_result = "None"
177
+ images_result = None
178
+ else:
179
+ output, report = exe_result
180
+ try:
181
+ text_result = exe_result[0]['text']
182
+ except:
183
+ text_result = None
184
+ try:
185
+ images_result = exe_result[0]['images']
186
+ except:
187
+ images_result = None
188
+
189
+ messages, new_image_clue_idx = update_messages_with_excu_content(messages, images_result, text_result, image_clue_idx)
190
+ image_clue_idx = new_image_clue_idx
191
+
192
+ code_execution_count += 1
193
+
194
+ # 生成下一部分响应
195
+ response_text, pred_stop_reason = call_chatgpt_api(
196
+ messages,
197
+ client,
198
+ max_tokens=10000,
199
+ stop=["</code>"]
200
+ )
201
+
202
+
203
+
204
+ else:
205
+ final_response = response_text
206
+ messages = update_messages_with_text(messages, response_text)
207
+ break
208
+
209
+ return messages
210
+
211
+ def process_message(messages):
212
+ # 创建HTML输出
213
+ html_output = '<div style="color: black;">' # 添加一个包裹所有内容的div,设置文本颜色为黑色
214
+
215
+ for message_item in messages:
216
+ role = message_item['role']
217
+ content = message_item['content']
218
+
219
+ # 根据角色设置样式
220
+ if role == "user" or role == "human":
221
+ html_output += f'<div style="background-color: #f0f0f0; padding: 10px; margin: 10px 0; border-radius: 10px; color: black;"><strong>User:</strong><br>'
222
+ elif role == "assistant":
223
+ html_output += f'<div style="background-color: #e6f7ff; padding: 10px; margin: 10px 0; border-radius: 10px; color: black;"><strong>Assistant:</strong><br>'
224
+ else:
225
+ html_output += f'<div style="background-color: #f9f9f9; padding: 10px; margin: 10px 0; border-radius: 10px; color: black;"><strong>{role.capitalize()}:</strong><br>'
226
+
227
+ # 处理内容
228
+ for content_item in content:
229
+ content_type = content_item['type']
230
+
231
+ if content_type == "text":
232
+ # 将Markdown文本转换为HTML
233
+ md_text = content_item['text']
234
+ html_text = markdown.markdown(md_text, extensions=['fenced_code', 'codehilite'])
235
+ # html_text = markdown.markdown(md_text)
236
+ # html_text = md_text
237
+ html_output += f'<div style="color: black;">{html_text}</div>'
238
+
239
+ elif content_type == "image_url":
240
+ content_value = content_item['image_url']['url']
241
+ # 如果是base64图片
242
+ if content_value.startswith("data:"):
243
+ html_output += f'<img src="{content_value}" style="max-width: 100%; margin: 10px 0;">'
244
+ else:
245
+ html_output += f'<img src="{content_value}" style="max-width: 100%; margin: 10px 0;">'
246
+
247
+ html_output += '</div>'
248
+
249
+ html_output += '</div>' # 关闭最外层div
250
+ return html_output
251
+
252
+ def o3_chat(api_key, base_url, question, image):
253
+ # 初始化组件
254
+ client = OpenAI(api_key=api_key, base_url=base_url)
255
+ executor = PythonExecutor()
256
+
257
+ prompt_template = json.load(open("./vis_python_template.json", "r", encoding="utf-8"))
258
+ prompt_type = 'vistool'
259
+
260
+ data = {
261
+ "question": question,
262
+ "image": image,
263
+ }
264
+
265
+ # 评估单个数据点
266
+ messages = evaluate_single_data(data, client, executor, prompt_template, prompt_type)
267
+ html_output = process_message(messages)
268
+ return html_output
269
+
270
+ # Gradio界面
271
+ def create_demo():
272
+ with gr.Blocks(css="footer {visibility: hidden}") as demo:
273
+ gr.Markdown("# O3 Visual Python Interpreter")
274
+ gr.Markdown("Upload an image and ask a question to get a response with code execution capabilities.")
275
+
276
+ with gr.Row():
277
+ with gr.Column(scale=1):
278
+ api_key = gr.Textbox(label="OpenAI API Key", type="password")
279
+ base_url = gr.Textbox(label="Base URL (optional)", value="https://api.openai.com/v1")
280
+ image_input = gr.Image(type="pil", label="Upload Image")
281
+ question = gr.Textbox(label="Question", placeholder="Ask a question about the image...")
282
+ submit_btn = gr.Button("Submit")
283
+
284
+ with gr.Column(scale=2):
285
+ output = gr.HTML(label="Response")
286
+
287
+ submit_btn.click(
288
+ fn=o3_chat,
289
+ inputs=[api_key, base_url, question, image_input],
290
+ outputs=output
291
+ )
292
+
293
+ gr.Markdown("""
294
+ ## Examples
295
+ Try asking questions like:
296
+ - "What's in this image?"
297
+ - "Can you analyze the data in this chart?"
298
+ - "Generate a similar visualization with Python"
299
+ """)
300
+
301
+ return demo
302
+
303
+ # 创建并启动应用
304
  if __name__ == "__main__":
305
+ demo = create_demo()
306
  demo.launch()
307
+