Update vis_python_exe.py
Browse files- vis_python_exe.py +737 -393
vis_python_exe.py
CHANGED
@@ -1,439 +1,783 @@
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import pickle
|
5 |
-
import traceback
|
6 |
-
import copy
|
7 |
-
import datetime
|
8 |
-
import dateutil.relativedelta
|
9 |
-
import multiprocess
|
10 |
-
from multiprocess import Pool
|
11 |
-
from typing import Any, Dict, Optional, Tuple, List, Union
|
12 |
-
from pebble import ProcessPool
|
13 |
-
from tqdm import tqdm
|
14 |
-
from concurrent.futures import TimeoutError
|
15 |
-
from functools import partial
|
16 |
-
from timeout_decorator import timeout
|
17 |
-
from contextlib import redirect_stdout
|
18 |
import base64
|
19 |
from io import BytesIO
|
20 |
from PIL import Image
|
21 |
-
import
|
|
|
|
|
|
|
22 |
|
23 |
-
def encode_image(
|
24 |
-
with open(image_path, "rb") as image_file:
|
25 |
-
return base64.b64encode(image_file.read()).decode('utf-8')
|
26 |
-
|
27 |
-
def base64_to_image(
|
28 |
-
base64_str: str,
|
29 |
-
remove_prefix: bool = True,
|
30 |
-
convert_mode: Optional[str] = "RGB"
|
31 |
-
) -> Union[Image.Image, None]:
|
32 |
"""
|
33 |
-
|
34 |
|
35 |
Args:
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
40 |
Returns:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
"""
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
GLOBAL_DICT = {}
|
71 |
-
LOCAL_DICT = None
|
72 |
-
HEADERS = []
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
if regex.search(r"(\s|^)?input\(", code_piece) or regex.search(
|
84 |
-
r"(\s|^)?os.system\(", code_piece
|
85 |
-
):
|
86 |
-
raise RuntimeError("Forbidden function calls detected")
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
""
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
|
|
106 |
else:
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
for k, v in var_dict.items():
|
115 |
-
self._global_vars[k] = v
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
runtime = runtime_class(messages)
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
result = program_io.read()
|
221 |
-
elif answer_symbol:
|
222 |
-
timeout(timeout_length)(runtime.exec_code)("\n".join(code))
|
223 |
-
result = runtime._global_vars.get(answer_symbol, "")
|
224 |
-
elif answer_expr:
|
225 |
-
timeout(timeout_length)(runtime.exec_code)("\n".join(code))
|
226 |
-
result = timeout(timeout_length)(runtime.eval_code)(answer_expr)
|
227 |
else:
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
else:
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
#
|
236 |
-
|
237 |
-
if
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
else:
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
except Exception as e:
|
249 |
-
result = ""
|
250 |
-
report = f"Error: {str(e)}\n{traceback.format_exc()}"
|
251 |
-
|
252 |
-
# 确保结果可序列化
|
253 |
-
try:
|
254 |
-
pickle.dumps(result)
|
255 |
-
except Exception as e:
|
256 |
-
result = f"Result serialization error: {str(e)}"
|
257 |
-
report = f"Serialization Error: {str(e)}"
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
if isinstance(s, dict):
|
267 |
-
# 如果是字典(包含图像),只截断文本部分
|
268 |
-
if 'text' in s:
|
269 |
-
half = max_length // 2
|
270 |
-
if len(s['text']) > max_length:
|
271 |
-
s['text'] = s['text'][:half] + "..." + s['text'][-half:]
|
272 |
-
return s
|
273 |
-
else:
|
274 |
-
half = max_length // 2
|
275 |
-
if isinstance(s, str) and len(s) > max_length:
|
276 |
-
s = s[:half] + "..." + s[-half:]
|
277 |
-
return s
|
278 |
-
|
279 |
-
def batch_apply(self, batch_code, messages):
|
280 |
-
all_code_snippets = self.process_generation_to_code(batch_code)
|
281 |
-
|
282 |
-
timeout_cnt = 0
|
283 |
-
all_exec_results = []
|
284 |
-
print(f"################################### num of cpu: {os.cpu_count()} ; len of code: {len(all_code_snippets)} ######################################")
|
285 |
-
with ProcessPool(
|
286 |
-
max_workers=min(len(all_code_snippets), os.cpu_count())
|
287 |
-
) as pool:
|
288 |
-
executor = partial(
|
289 |
-
self.execute,
|
290 |
-
get_answer_from_stdout=self.get_answer_from_stdout,
|
291 |
-
runtime_class=self.runtime_class,
|
292 |
-
answer_symbol=self.answer_symbol,
|
293 |
-
answer_expr=self.answer_expr,
|
294 |
-
timeout_length=self.timeout_length,
|
295 |
)
|
296 |
-
future = pool.map(executor, all_code_snippets, [messages], timeout=self.timeout_length)
|
297 |
-
iterator = future.result()
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
if progress_bar is not None:
|
321 |
-
progress_bar.close()
|
322 |
-
|
323 |
-
batch_results = []
|
324 |
-
for code, (res, report) in zip(all_code_snippets, all_exec_results):
|
325 |
-
# 处理结果
|
326 |
-
if isinstance(res, dict):
|
327 |
-
# 如果结果包含图像,特殊处理
|
328 |
-
if 'text' in res:
|
329 |
-
res['text'] = str(res['text']).strip()
|
330 |
-
res['text'] = self.truncate(res['text'])
|
331 |
-
report = str(report).strip()
|
332 |
-
report = self.truncate(report)
|
333 |
-
else:
|
334 |
-
# 普通文本结果
|
335 |
-
res = str(res).strip()
|
336 |
-
res = self.truncate(res)
|
337 |
-
report = str(report).strip()
|
338 |
-
report = self.truncate(report)
|
339 |
-
batch_results.append((res, report))
|
340 |
-
return batch_results
|
341 |
-
|
342 |
-
|
343 |
-
def _test():
|
344 |
-
image_path = "/mnt/petrelfs/zhaoshitian/vis_tool_inference_engine/test_data/0.JPG"
|
345 |
-
image_base64 = encode_image(image_path)
|
346 |
-
messages = [
|
347 |
-
{
|
348 |
-
"role": "user",
|
349 |
-
"content": [{"type": "text", "text": "From the information on that advertising board, what is the type of this shop?"}]
|
350 |
-
},
|
351 |
-
{
|
352 |
-
"role": "user",
|
353 |
-
"content": [{"type": "text", "text": "image_clue_0"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}]
|
354 |
-
}
|
355 |
-
]
|
356 |
-
# 测试普通计算
|
357 |
-
math_code ="""
|
358 |
-
a = 1
|
359 |
-
b = 2
|
360 |
-
c = a + b
|
361 |
-
print(c)
|
362 |
-
"""
|
363 |
-
|
364 |
-
batch_code = [math_code]
|
365 |
-
|
366 |
-
executor = PythonExecutor()
|
367 |
-
predictions = executor.apply(batch_code[0], messages)
|
368 |
-
print("数学计算结果:", predictions)
|
369 |
|
370 |
-
#
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
#
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
f.write(img_bytes)
|
427 |
-
print(f"图像已保存为 captured_image_{i}.png")
|
428 |
-
|
429 |
-
if 'text' in image_result[0]:
|
430 |
-
print("文本输出:", image_result[0]['text'])
|
431 |
-
else:
|
432 |
-
print("未捕获到图像")
|
433 |
-
print("结果:", image_result[0])
|
434 |
-
|
435 |
-
print("\n执行状态:", image_result[1])
|
436 |
|
|
|
|
|
|
|
|
|
437 |
|
438 |
-
|
439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
import os
|
3 |
+
import re
|
4 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import base64
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
8 |
+
import argparse
|
9 |
+
from inference_engine.safe_persis_shared_vis_python_exe import PythonExecutor, ImageRuntime
|
10 |
+
from openai import OpenAI
|
11 |
+
import anthropic
|
12 |
|
13 |
+
def encode_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
15 |
+
Convert a PIL.Image object or image file path to base64-encoded string, and get resolution info.
|
16 |
|
17 |
Args:
|
18 |
+
image: Can be a PIL.Image object or image file path.
|
19 |
+
Returns:
|
20 |
+
dict with keys:
|
21 |
+
- 'base64': base64-encoded string
|
22 |
+
- 'width': width in pixels
|
23 |
+
- 'height': height in pixels
|
24 |
+
- 'resolution': string "widthxheight"
|
25 |
+
"""
|
26 |
+
img_obj = None
|
27 |
+
|
28 |
+
if isinstance(image, str):
|
29 |
+
# Handle file path
|
30 |
+
img_obj = Image.open(image)
|
31 |
+
with open(image, "rb") as image_file:
|
32 |
+
base64_str = base64.b64encode(image_file.read()).decode('utf-8')
|
33 |
+
else:
|
34 |
+
# Handle PIL.Image object
|
35 |
+
img_obj = image
|
36 |
+
buffered = BytesIO()
|
37 |
+
image.save(buffered, format='PNG')
|
38 |
+
base64_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
39 |
+
|
40 |
+
width, height = img_obj.size
|
41 |
+
|
42 |
+
return {
|
43 |
+
'base64': base64_str,
|
44 |
+
'width': width,
|
45 |
+
'height': height
|
46 |
+
}
|
47 |
+
|
48 |
+
def encode_image_with_resize(image):
|
49 |
+
"""
|
50 |
+
Convert a PIL.Image object or image file path to base64-encoded string, get resolution info.
|
51 |
+
If resolution > 1024x1024, resize to half.
|
52 |
|
53 |
+
Args:
|
54 |
+
image: Can be a PIL.Image object or image file path
|
55 |
Returns:
|
56 |
+
dict with keys:
|
57 |
+
- 'base64': base64-encoded string
|
58 |
+
- 'width': width in pixels
|
59 |
+
- 'height': height in pixels
|
60 |
+
- 'resolution': string "widthxheight"
|
61 |
"""
|
62 |
+
img_obj = None
|
63 |
+
|
64 |
+
if isinstance(image, str):
|
65 |
+
img_obj = Image.open(image)
|
66 |
+
else:
|
67 |
+
img_obj = image
|
68 |
+
|
69 |
+
# Resize if larger than 1024x1024
|
70 |
+
width, height = img_obj.size
|
71 |
+
if width > 1024 or height > 1024:
|
72 |
+
new_size = (width // 2, height // 2)
|
73 |
+
img_obj = img_obj.resize(new_size, Image.LANCZOS)
|
74 |
+
width, height = img_obj.size
|
75 |
+
|
76 |
+
buffered = BytesIO()
|
77 |
+
img_obj.save(buffered, format='PNG')
|
78 |
+
base64_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
79 |
+
|
80 |
+
return {
|
81 |
+
'base64': base64_str,
|
82 |
+
'width': width,
|
83 |
+
'height': height,
|
84 |
+
'resolution': f"{width}x{height}"
|
85 |
+
}
|
86 |
+
|
87 |
+
def check(evaluator, pred_ans, real_ans):
|
88 |
+
if len(pred_ans) == 0:
|
89 |
+
return []
|
90 |
+
correctness = evaluator.score(pred_ans, real_ans)
|
91 |
+
return correctness
|
92 |
+
|
93 |
+
def execute_codes(codes, messages, executor: PythonExecutor):
|
94 |
+
no_code_idx = []
|
95 |
+
codes_use = []
|
96 |
+
for i, code in enumerate(codes):
|
97 |
+
if code == "":
|
98 |
+
no_code_idx.append(i)
|
99 |
+
else:
|
100 |
+
codes_use.append(code)
|
101 |
+
batch_results = executor.batch_apply(codes_use, messages)
|
102 |
+
return batch_results, no_code_idx
|
103 |
|
104 |
+
def process_prompt_init(question, image_path_list, prompt_template, prompt_type, api_name):
|
105 |
+
with open(prompt_template, "r") as fin:
|
106 |
+
sys = json.load(fin)
|
107 |
+
prompt_prefix = sys[prompt_type]
|
108 |
+
|
109 |
+
image_path = image_path_list[0]
|
110 |
+
|
111 |
+
if "<IMAGE_PLACE_HOLDER_0>" in question:
|
112 |
+
if "no_tool" in prompt_type:
|
113 |
+
|
114 |
+
if "claude" in api_name:
|
115 |
+
img_result = encode_image_with_resize(image_path)
|
116 |
+
else:
|
117 |
+
img_result = encode_image(image_path)
|
118 |
+
image_base64 = img_result['base64']
|
119 |
+
question_with_options = question
|
120 |
+
question = prompt_prefix.format(query=question_with_options)
|
121 |
+
|
122 |
+
parts = question.split("<IMAGE_PLACE_HOLDER_0>")
|
123 |
+
content = []
|
124 |
|
125 |
+
# Add text before image (if any)
|
126 |
+
if parts[0].strip():
|
127 |
+
content.append({"type": "text", "text": parts[0].strip()})
|
128 |
+
# Add image
|
129 |
+
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}})
|
130 |
+
|
131 |
+
# Add text after image (if any)
|
132 |
+
if len(parts) > 1 and parts[1].strip():
|
133 |
+
content.append({"type": "text", "text": parts[1].strip()})
|
134 |
+
|
135 |
+
messages = [
|
136 |
+
{
|
137 |
+
"role": "user",
|
138 |
+
"content": content
|
139 |
+
}
|
140 |
+
]
|
141 |
+
|
142 |
+
return messages
|
143 |
+
|
144 |
+
else:
|
145 |
+
if "claude" in api_name:
|
146 |
+
img_result = encode_image_with_resize(image_path)
|
147 |
+
else:
|
148 |
+
img_result = encode_image(image_path)
|
149 |
+
image_base64 = img_result['base64']
|
150 |
+
width = img_result['width']
|
151 |
+
height = img_result['height']
|
152 |
+
question_with_options = question
|
153 |
+
question = prompt_prefix.format(query=question_with_options, width=str(width), height=str(height))
|
154 |
+
|
155 |
+
# Split question into parts
|
156 |
+
parts = question.split("<IMAGE_PLACE_HOLDER_0>")
|
157 |
+
# Build message with image_clue tags
|
158 |
+
content = []
|
159 |
+
|
160 |
+
# Add text before image (if any)
|
161 |
+
if parts[0].strip():
|
162 |
+
content.append({"type": "text", "text": parts[0].strip()})
|
163 |
+
|
164 |
+
# Add image with tags
|
165 |
+
content.append({"type": "text", "text": "<image_clue_0>"})
|
166 |
+
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}})
|
167 |
+
content.append({"type": "text", "text": "</image_clue_0>\n\n"})
|
168 |
+
|
169 |
+
# Add text after image (if any)
|
170 |
+
if len(parts) > 1 and parts[1].strip():
|
171 |
+
content.append({"type": "text", "text": parts[1].strip()})
|
172 |
|
173 |
+
messages = [
|
174 |
+
{
|
175 |
+
"role": "user",
|
176 |
+
"content": content
|
177 |
+
}
|
178 |
+
]
|
179 |
|
180 |
+
return messages
|
|
|
|
|
|
|
181 |
|
182 |
+
else:
|
183 |
+
if "no_tool" in prompt_type:
|
184 |
+
|
185 |
+
if "claude" in api_name:
|
186 |
+
img_result = encode_image_with_resize(image_path)
|
187 |
+
else:
|
188 |
+
img_result = encode_image(image_path)
|
189 |
+
image_base64 = img_result['base64']
|
190 |
+
question_with_options = question
|
191 |
|
192 |
+
messages = [
|
193 |
+
{
|
194 |
+
"role": "user",
|
195 |
+
"content": [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}] + [{"type": "text", "text": prompt_prefix.format(query=question_with_options)}]
|
196 |
+
}
|
197 |
+
]
|
198 |
|
199 |
+
return messages
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
else:
|
202 |
+
if "claude" in api_name:
|
203 |
+
img_result = encode_image_with_resize(image_path)
|
204 |
+
else:
|
205 |
+
img_result = encode_image(image_path)
|
206 |
+
image_base64 = img_result['base64']
|
207 |
+
width = img_result['width']
|
208 |
+
height = img_result['height']
|
209 |
+
question_with_options = question
|
210 |
+
|
211 |
+
messages = [
|
212 |
+
{
|
213 |
+
"role": "user",
|
214 |
+
"content": [{"type": "text", "text": "<image_clue_0>"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}] + [{"type": "text", "text": "</image_clue_0>\n\n"}] + [{"type": "text", "text": prompt_prefix.format(query=question_with_options, width=str(width), height=str(height))}]
|
215 |
+
}
|
216 |
+
]
|
217 |
+
|
218 |
+
return messages
|
219 |
+
|
220 |
+
def process_prompt_init_multi_images(question, image_path_list, prompt_template, prompt_type, api_name):
|
221 |
+
with open(prompt_template, "r") as fin:
|
222 |
+
sys = json.load(fin)
|
223 |
+
prompt_prefix = sys[prompt_type]
|
224 |
+
|
225 |
+
# Prepare image data
|
226 |
+
image_data = []
|
227 |
+
image_information = ""
|
228 |
+
|
229 |
+
for i, image_path in enumerate(image_path_list):
|
230 |
+
if "claude" in api_name:
|
231 |
+
img_result = encode_image_with_resize(image_path)
|
232 |
+
else:
|
233 |
+
img_result = encode_image(image_path)
|
234 |
+
image_base64 = img_result['base64']
|
235 |
+
width = img_result['width']
|
236 |
+
height = img_result['height']
|
237 |
|
238 |
+
image_data.append({
|
239 |
+
"index": i,
|
240 |
+
"base64": image_base64,
|
241 |
+
"width": width,
|
242 |
+
"height": height,
|
243 |
+
"placeholder": f"<IMAGE_PLACE_HOLDER_{i}>"
|
244 |
+
})
|
245 |
|
246 |
+
image_information += f"width of image_clue_{i}: {width}, height of image_clue_{i}: {height}\n"
|
247 |
+
|
248 |
+
# Format question
|
249 |
+
formatted_question = prompt_prefix.format(query=question, image_information=image_information)
|
250 |
+
|
251 |
+
# Check if placeholder exists
|
252 |
+
has_placeholders = any(f"<IMAGE_PLACE_HOLDER_{i}>" in formatted_question for i in range(len(image_path_list)))
|
253 |
+
|
254 |
+
if has_placeholders:
|
255 |
+
# Insert images at placeholder positions
|
256 |
+
if "no_tool" in prompt_type:
|
257 |
+
content = []
|
258 |
+
remaining_text = formatted_question
|
259 |
+
|
260 |
+
for img_data in image_data:
|
261 |
+
placeholder = img_data["placeholder"]
|
262 |
+
if placeholder in remaining_text:
|
263 |
+
parts = remaining_text.split(placeholder, 1)
|
264 |
+
|
265 |
+
if parts[0]:
|
266 |
+
content.append({"type": "text", "text": parts[0]})
|
267 |
+
|
268 |
+
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
|
269 |
+
|
270 |
+
remaining_text = parts[1]
|
271 |
+
|
272 |
+
if remaining_text:
|
273 |
+
content.append({"type": "text", "text": remaining_text})
|
274 |
|
275 |
+
messages = [{"role": "user", "content": content}]
|
276 |
+
return messages
|
277 |
else:
|
278 |
+
content = []
|
279 |
+
remaining_text = formatted_question
|
280 |
+
|
281 |
+
for img_data in image_data:
|
282 |
+
placeholder = img_data["placeholder"]
|
283 |
+
if placeholder in remaining_text:
|
284 |
+
parts = remaining_text.split(placeholder, 1)
|
285 |
+
|
286 |
+
if parts[0]:
|
287 |
+
content.append({"type": "text", "text": parts[0]})
|
288 |
+
|
289 |
+
i = img_data["index"]
|
290 |
+
content.append({"type": "text", "text": f"<image_clue_{i}>"})
|
291 |
+
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
|
292 |
+
content.append({"type": "text", "text": f"</image_clue_{i}>\n\n"})
|
293 |
+
|
294 |
+
remaining_text = parts[1]
|
295 |
+
|
296 |
+
if remaining_text:
|
297 |
+
content.append({"type": "text", "text": remaining_text})
|
298 |
+
|
299 |
+
messages = [{"role": "user", "content": content}]
|
300 |
+
return messages
|
301 |
+
else:
|
302 |
+
# Handle as usual if no placeholder
|
303 |
+
if "no_tool" in prompt_type:
|
304 |
+
content = []
|
305 |
+
|
306 |
+
for i, img_data in enumerate(image_data):
|
307 |
+
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
|
308 |
+
|
309 |
+
content.append({"type": "text", "text": formatted_question})
|
310 |
+
|
311 |
+
messages = [{"role": "user", "content": content}]
|
312 |
+
return messages
|
313 |
+
else:
|
314 |
+
content = []
|
315 |
+
|
316 |
+
for i, img_data in enumerate(image_data):
|
317 |
+
content.append({"type": "text", "text": f"<image_clue_{i}>"})
|
318 |
+
content.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_data['base64']}"}})
|
319 |
+
content.append({"type": "text", "text": f"</image_clue_{i}>\n\n"})
|
320 |
+
|
321 |
+
content.append({"type": "text", "text": formatted_question})
|
322 |
+
|
323 |
+
messages = [{"role": "user", "content": content}]
|
324 |
+
return messages
|
325 |
+
|
326 |
+
|
327 |
+
def update_messages_with_execute_content(image_nums_in_input, messages, images_result, text_result, error_result, image_clue_idx):
|
328 |
+
if error_result is None:
|
329 |
+
new_messages = []
|
330 |
+
image_content = []
|
331 |
+
for message_item in messages[:-1]:
|
332 |
+
new_messages.append(message_item)
|
333 |
+
|
334 |
+
assistant_message_item = messages[-1]['content']
|
335 |
+
interpreter_message_text_prefix = [{"type": "text", "text": f"<interpreter>\nText Result:\n{text_result}\nImage Result:\n"}]
|
336 |
+
if images_result is not None:
|
337 |
+
print(f"#### image_clue_index: {image_clue_idx},Image_nums_in_input: {image_nums_in_input}, len of images_result: {len(images_result)}")
|
338 |
+
# for image_base64_item in images_result[image_clue_idx-image_nums_in_input:]:
|
339 |
+
for image_base64_item in images_result:
|
340 |
+
interpreter_message_images = [{"type": "text", "text": f"<image_clue_{image_clue_idx}>"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64_item}"}}] + [{"type": "text", "text": f"</image_clue_{image_clue_idx}>"}]
|
341 |
+
image_content += interpreter_message_images
|
342 |
+
image_clue_idx += 1
|
343 |
+
else:
|
344 |
+
image_content = [{"type": "text", "text": "None"}]
|
345 |
+
interpreter_message_text_profill = [{"type": "text", "text": "</interpreter>\n"}]
|
346 |
|
347 |
+
interpreter_message_item = interpreter_message_text_prefix + image_content + interpreter_message_text_profill
|
348 |
+
new_messages.append({"role": "assistant", "content": assistant_message_item})
|
349 |
+
new_messages.append({"role": "user", "content": interpreter_message_item})
|
350 |
+
else:
|
351 |
+
new_messages = []
|
352 |
+
for message_item in messages[:-1]:
|
353 |
+
new_messages.append(message_item)
|
354 |
+
|
355 |
+
assistant_message_item = messages[-1]['content']
|
356 |
+
interpreter_message_text_prefix = [{"type": "text", "text": f"<interpreter>{error_result}"}]
|
357 |
+
interpreter_message_text_profill = [{"type": "text", "text": "</interpreter>\n"}]
|
358 |
+
|
359 |
+
interpreter_message_item = interpreter_message_text_prefix + interpreter_message_text_profill
|
360 |
+
new_messages.append({"role": "assistant", "content": assistant_message_item})
|
361 |
+
new_messages.append({"role": "user", "content": interpreter_message_item})
|
362 |
|
363 |
+
return new_messages, image_clue_idx
|
|
|
|
|
364 |
|
365 |
+
def update_messages_with_code(messages, generated_content):
|
366 |
+
message_item = {
|
367 |
+
"role": "assistant",
|
368 |
+
"content": [{"type": "text", "text": f"{generated_content}</code>\n"}]
|
369 |
+
}
|
370 |
+
|
371 |
+
messages.append(message_item)
|
372 |
+
return messages
|
373 |
|
374 |
+
def update_messages_with_text(messages, generated_content):
|
375 |
+
message_item = {
|
376 |
+
"role": "assistant",
|
377 |
+
"content": [{"type": "text", "text": f"{generated_content}"}]
|
378 |
+
}
|
379 |
|
380 |
+
messages.append(message_item)
|
381 |
+
return messages
|
382 |
+
|
383 |
+
def call_chatgpt_api(args, messages, client, max_tokens=10000, stop=None, temperature=0.6):
|
384 |
+
"""Call ChatGPT API with the given messages"""
|
385 |
+
try:
|
386 |
+
client_type = args.client_type
|
387 |
+
api_name = args.api_name
|
388 |
+
except:
|
389 |
+
client_type = args['client_type']
|
390 |
+
api_name = args['api_name']
|
391 |
|
392 |
+
if client_type == "openai" or client_type == "azure":
|
393 |
+
response = client.chat.completions.create(
|
394 |
+
model=api_name,
|
395 |
+
messages=messages,
|
396 |
+
max_tokens=max_tokens,
|
397 |
+
temperature=temperature,
|
398 |
+
top_p=1.0,
|
399 |
+
stop=stop,
|
400 |
+
timeout=300
|
401 |
+
)
|
402 |
+
response_text = response.choices[0].message.content
|
403 |
+
elif client_type == "anthropic":
|
404 |
+
message = client.messages.create(
|
405 |
+
model=api_name,
|
406 |
+
max_tokens=max_tokens,
|
407 |
+
messages=messages,
|
408 |
+
temperature=temperature,
|
409 |
+
top_p=1.0,
|
410 |
+
stop_sequences=stop
|
411 |
+
)
|
412 |
+
response_text = message.content[0].text if isinstance(message.content, list) else message.content
|
413 |
+
elif client_type == "vllm":
|
414 |
+
response = client.chat.completions.create(
|
415 |
+
model=api_name,
|
416 |
+
messages=messages,
|
417 |
+
max_tokens=max_tokens,
|
418 |
+
temperature=temperature,
|
419 |
+
top_p=1.0,
|
420 |
+
stop=stop
|
421 |
+
)
|
422 |
+
response_text = response.choices[0].message.content
|
423 |
+
else:
|
424 |
+
print("Your args.client_type must be one of openai, azure, anthropic and vllm.")
|
425 |
+
return None, None
|
426 |
+
|
427 |
+
# Check if stop sequence is encountered
|
428 |
+
stop_reason = None
|
429 |
+
if stop and any(s in response_text for s in stop):
|
430 |
+
for s in stop:
|
431 |
+
if s in response_text:
|
432 |
+
stop_reason = s
|
433 |
+
break
|
434 |
+
else:
|
435 |
+
if client_type in ["openai", "azure", "vllm"]:
|
436 |
+
stop_reason = response.choices[0].finish_reason
|
437 |
+
else:
|
438 |
+
stop_reason = "stop"
|
439 |
+
|
440 |
+
if "<code>" in response_text:
|
441 |
+
stop_reason = "</code>"
|
442 |
+
|
443 |
+
return response_text, stop_reason
|
444 |
|
445 |
+
def evaluate_single_data(args, data, client, executor):
|
446 |
+
try:
|
447 |
+
prompt_template = args.prompt_template
|
448 |
+
prompt = args.prompt
|
449 |
+
exe_code = args.exe_code
|
450 |
+
max_tokens = args.max_tokens
|
451 |
+
temperature = args.temperature
|
452 |
+
api_name = args.api_name
|
453 |
+
except:
|
454 |
+
prompt_template = args['prompt_template']
|
455 |
+
prompt = args['prompt']
|
456 |
+
exe_code = args['exe_code']
|
457 |
+
max_tokens = args['max_tokens']
|
458 |
+
temperature = args['temperature']
|
459 |
+
api_name = args['api_name']
|
460 |
+
|
461 |
+
image_path_list = data['image_path_list']
|
462 |
+
|
463 |
+
if "no_tool" in prompt:
|
464 |
+
if len(image_path_list) == 1:
|
465 |
+
messages = process_prompt_init(data["question"], image_path_list, prompt_template, prompt, api_name)
|
466 |
+
elif len(image_path_list) >= 2:
|
467 |
+
messages = process_prompt_init_multi_images(data["question"], image_path_list, prompt_template, prompt, api_name)
|
468 |
+
else:
|
469 |
+
if len(image_path_list) == 1:
|
470 |
+
prompt = "vistool_with_img_info_v2"
|
471 |
+
messages = process_prompt_init(data["question"], image_path_list, prompt_template, prompt, api_name)
|
472 |
+
elif len(image_path_list) >= 2:
|
473 |
+
prompt = "vistool_with_img_info_multi_image"
|
474 |
+
messages = process_prompt_init_multi_images(data["question"], image_path_list, prompt_template, prompt, api_name)
|
475 |
+
|
476 |
+
# Generate initial response
|
477 |
+
response_text, pred_stop_reason = call_chatgpt_api(
|
478 |
+
args,
|
479 |
+
messages,
|
480 |
+
client,
|
481 |
+
max_tokens=max_tokens,
|
482 |
+
stop=["</code>"] if exe_code else None,
|
483 |
+
temperature=temperature
|
484 |
+
)
|
485 |
+
|
486 |
+
# Handle response
|
487 |
+
final_response = response_text
|
488 |
+
code_execution_count = 0
|
489 |
+
image_clue_idx = len(image_path_list)
|
490 |
+
|
491 |
+
while True:
|
492 |
+
# Check if code execution is needed
|
493 |
+
if exe_code and pred_stop_reason == "</code>":
|
494 |
+
# Extract code to execute
|
495 |
+
messages = update_messages_with_code(messages, response_text)
|
496 |
+
code_to_execute = response_text.split("```python")[-1].split("```")[0].strip()
|
|
|
497 |
|
498 |
+
# Execute code
|
499 |
+
exe_result = execute_codes([code_to_execute], messages, executor)[0][0]
|
500 |
+
if exe_result is None:
|
501 |
+
text_result = "None"
|
502 |
+
images_result = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
else:
|
504 |
+
output, report = exe_result
|
505 |
+
if report == "Done":
|
506 |
+
error_result = None
|
507 |
+
try:
|
508 |
+
text_result = exe_result[0]['text']
|
509 |
+
except:
|
510 |
+
text_result = None
|
511 |
+
print("text result is none.")
|
512 |
+
try:
|
513 |
+
images_result = exe_result[0]['images']
|
514 |
+
except:
|
515 |
+
images_result = None
|
516 |
+
print("image result is none.")
|
517 |
else:
|
518 |
+
error_result = report
|
519 |
+
text_result = None
|
520 |
+
images_result = None
|
521 |
+
|
522 |
+
messages, new_image_clue_idx = update_messages_with_execute_content(len(image_path_list), messages, images_result, text_result, error_result, image_clue_idx)
|
523 |
+
image_clue_idx = new_image_clue_idx
|
524 |
+
|
525 |
+
code_execution_count += 1
|
526 |
+
|
527 |
+
# Generate next response part
|
528 |
+
response_text, pred_stop_reason = call_chatgpt_api(
|
529 |
+
args,
|
530 |
+
messages,
|
531 |
+
client,
|
532 |
+
max_tokens=max_tokens,
|
533 |
+
stop=["</code>"] if exe_code else None,
|
534 |
+
temperature=temperature
|
535 |
+
)
|
536 |
+
|
537 |
+
else:
|
538 |
+
final_response = response_text
|
539 |
+
messages = update_messages_with_text(messages, response_text)
|
540 |
+
break
|
541 |
+
|
542 |
+
return messages, final_response
|
543 |
+
|
544 |
+
|
545 |
+
def evaluate_single_data_multi_images(args, data, client, executor):
|
546 |
+
try:
|
547 |
+
prompt_template = args.prompt_template
|
548 |
+
prompt = args.prompt
|
549 |
+
exe_code = args.exe_code
|
550 |
+
max_tokens = args.max_tokens
|
551 |
+
except:
|
552 |
+
prompt_template = args['prompt_template']
|
553 |
+
prompt = args['prompt']
|
554 |
+
exe_code = args['exe_code']
|
555 |
+
max_tokens = args['max_tokens']
|
556 |
+
|
557 |
+
messages = process_prompt_init_multi_images(data["question"], data['image_path_list'], prompt_template, prompt)
|
558 |
+
|
559 |
+
# Generate initial response
|
560 |
+
response_text, pred_stop_reason = call_chatgpt_api(
|
561 |
+
args,
|
562 |
+
messages,
|
563 |
+
client,
|
564 |
+
max_tokens=max_tokens,
|
565 |
+
stop=["</code>"] if exe_code else None
|
566 |
+
)
|
567 |
+
|
568 |
+
# Handle response
|
569 |
+
final_response = response_text
|
570 |
+
code_execution_count = 0
|
571 |
+
image_clue_idx = data['image_nums_in_input']
|
572 |
+
|
573 |
+
while True:
|
574 |
+
# Check if code execution is needed
|
575 |
+
if exe_code and pred_stop_reason == "</code>":
|
576 |
+
# Extract code to execute
|
577 |
+
messages = update_messages_with_code(messages, response_text)
|
578 |
+
code_to_execute = response_text.split("```python")[-1].split("```")[0].strip()
|
579 |
|
580 |
+
# Execute code
|
581 |
+
exe_result = execute_codes([code_to_execute], messages, executor)[0][0]
|
582 |
+
if exe_result is None:
|
583 |
+
text_result = "None"
|
584 |
+
images_result = None
|
585 |
+
else:
|
586 |
+
output, report = exe_result
|
587 |
+
if report == "Done":
|
588 |
+
error_result = None
|
589 |
+
try:
|
590 |
+
text_result = exe_result[0]['text']
|
591 |
+
except:
|
592 |
+
text_result = None
|
593 |
+
print("text result is none.")
|
594 |
+
try:
|
595 |
+
images_result = exe_result[0]['images']
|
596 |
+
except:
|
597 |
+
images_result = None
|
598 |
+
print("image result is none.")
|
599 |
else:
|
600 |
+
error_result = report
|
601 |
+
text_result = None
|
602 |
+
images_result = None
|
603 |
+
|
604 |
+
messages, new_image_clue_idx = update_messages_with_execute_content(data['image_nums_in_input'], messages, images_result, text_result, error_result, image_clue_idx)
|
605 |
+
image_clue_idx = new_image_clue_idx
|
606 |
|
607 |
+
code_execution_count += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
608 |
|
609 |
+
# Generate next response part
|
610 |
+
response_text, pred_stop_reason = call_chatgpt_api(
|
611 |
+
args,
|
612 |
+
messages,
|
613 |
+
client,
|
614 |
+
max_tokens=max_tokens,
|
615 |
+
stop=["</code>"] if exe_code else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
)
|
|
|
|
|
617 |
|
618 |
+
else:
|
619 |
+
final_response = response_text
|
620 |
+
messages = update_messages_with_text(messages, response_text)
|
621 |
+
break
|
622 |
+
|
623 |
+
return messages, final_response
|
624 |
+
|
625 |
+
def evaluate_single_data_video(args, data, client, executor):
|
626 |
+
try:
|
627 |
+
prompt_template = args.prompt_template
|
628 |
+
prompt = args.prompt
|
629 |
+
exe_code = args.exe_code
|
630 |
+
max_tokens = args.max_tokens
|
631 |
+
except:
|
632 |
+
prompt_template = args['prompt_template']
|
633 |
+
prompt = args['prompt']
|
634 |
+
exe_code = args['exe_code']
|
635 |
+
max_tokens = args['max_tokens']
|
636 |
+
|
637 |
+
messages = process_prompt_init_multi_images(data["question"], data['image_path_list'], prompt_template, prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
|
639 |
+
# Generate initial response
|
640 |
+
response_text, pred_stop_reason = call_chatgpt_api(
|
641 |
+
args,
|
642 |
+
messages,
|
643 |
+
client,
|
644 |
+
max_tokens=max_tokens,
|
645 |
+
stop=["</code>"] if exe_code else None
|
646 |
+
)
|
647 |
+
|
648 |
+
# Handle response
|
649 |
+
final_response = response_text
|
650 |
+
code_execution_count = 0
|
651 |
+
image_clue_idx = data['image_nums_in_input']
|
652 |
+
|
653 |
+
while True:
|
654 |
+
# Check if code execution is needed
|
655 |
+
if exe_code and pred_stop_reason == "</code>":
|
656 |
+
# Extract code to execute
|
657 |
+
messages = update_messages_with_code(messages, response_text)
|
658 |
+
code_to_execute = response_text.split("```python")[-1].split("```")[0].strip()
|
659 |
+
|
660 |
+
# Execute code
|
661 |
+
exe_result = execute_codes([code_to_execute], messages, executor)[0][0]
|
662 |
+
if exe_result is None:
|
663 |
+
text_result = "None"
|
664 |
+
images_result = None
|
665 |
+
else:
|
666 |
+
output, report = exe_result
|
667 |
+
if report == "Done":
|
668 |
+
error_result = None
|
669 |
+
try:
|
670 |
+
text_result = exe_result[0]['text']
|
671 |
+
except:
|
672 |
+
text_result = None
|
673 |
+
print("text result is none.")
|
674 |
+
try:
|
675 |
+
images_result = exe_result[0]['images']
|
676 |
+
except:
|
677 |
+
images_result = None
|
678 |
+
print("image result is none.")
|
679 |
+
else:
|
680 |
+
error_result = report
|
681 |
+
text_result = None
|
682 |
+
images_result = None
|
683 |
|
684 |
+
messages, new_image_clue_idx = update_messages_with_execute_content(data['image_nums_in_input'], messages, images_result, text_result, error_result, image_clue_idx)
|
685 |
+
image_clue_idx = new_image_clue_idx
|
686 |
+
|
687 |
+
code_execution_count += 1
|
688 |
+
|
689 |
+
# Generate next response part
|
690 |
+
response_text, pred_stop_reason = call_chatgpt_api(
|
691 |
+
args,
|
692 |
+
messages,
|
693 |
+
client,
|
694 |
+
max_tokens=max_tokens,
|
695 |
+
stop=["</code>"] if exe_code else None
|
696 |
+
)
|
697 |
|
698 |
+
else:
|
699 |
+
final_response = response_text
|
700 |
+
messages = update_messages_with_text(messages, response_text)
|
701 |
+
break
|
702 |
+
|
703 |
+
return messages, final_response
|
704 |
+
|
705 |
+
|
706 |
+
# New wrapper functions for safe execution with cleanup
|
707 |
+
def evaluate_batch_with_cleanup(args, data_list, client):
|
708 |
+
"""Wrapper function to ensure proper cleanup of resources when processing multiple items"""
|
709 |
+
# Initialize executor with process isolation
|
710 |
+
executor = PythonExecutor(use_process_isolation=True)
|
711 |
|
712 |
+
try:
|
713 |
+
results = []
|
714 |
+
for data in data_list:
|
715 |
+
try:
|
716 |
+
result = evaluate_single_data(args, data, client, executor)
|
717 |
+
results.append(result)
|
718 |
+
except Exception as e:
|
719 |
+
print(f"Error processing data item: {str(e)}")
|
720 |
+
results.append((None, f"Error: {str(e)}"))
|
721 |
+
# Reset the executor for the next item
|
722 |
+
executor.reset()
|
723 |
|
724 |
+
return results
|
725 |
+
finally:
|
726 |
+
# Ensure cleanup of persistent worker
|
727 |
+
del executor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
728 |
|
729 |
+
def evaluate_single_with_cleanup(args, data, client):
|
730 |
+
"""Wrapper function for evaluating a single item with proper cleanup"""
|
731 |
+
# Initialize executor with process isolation
|
732 |
+
executor = PythonExecutor(use_process_isolation=True)
|
733 |
|
734 |
+
try:
|
735 |
+
result = evaluate_single_data(args, data, client, executor)
|
736 |
+
return result
|
737 |
+
finally:
|
738 |
+
# Ensure cleanup of persistent worker
|
739 |
+
del executor
|
740 |
+
|
741 |
+
def evaluate_multi_images_with_cleanup(args, data_list, client):
|
742 |
+
"""Wrapper function for multi-image evaluation with proper cleanup"""
|
743 |
+
# Initialize executor with process isolation
|
744 |
+
executor = PythonExecutor(use_process_isolation=True)
|
745 |
+
|
746 |
+
try:
|
747 |
+
results = []
|
748 |
+
for data in data_list:
|
749 |
+
try:
|
750 |
+
result = evaluate_single_data_multi_images(args, data, client, executor)
|
751 |
+
results.append(result)
|
752 |
+
except Exception as e:
|
753 |
+
print(f"Error processing multi-image data: {str(e)}")
|
754 |
+
results.append((None, f"Error: {str(e)}"))
|
755 |
+
# Reset the executor for the next item
|
756 |
+
executor.reset()
|
757 |
+
|
758 |
+
return results
|
759 |
+
finally:
|
760 |
+
# Ensure cleanup of persistent worker
|
761 |
+
del executor
|
762 |
+
|
763 |
+
def evaluate_video_with_cleanup(args, data_list, client):
|
764 |
+
"""Wrapper function for video evaluation with proper cleanup"""
|
765 |
+
# Initialize executor with process isolation
|
766 |
+
executor = PythonExecutor(use_process_isolation=True)
|
767 |
+
|
768 |
+
try:
|
769 |
+
results = []
|
770 |
+
for data in data_list:
|
771 |
+
try:
|
772 |
+
result = evaluate_single_data_video(args, data, client, executor)
|
773 |
+
results.append(result)
|
774 |
+
except Exception as e:
|
775 |
+
print(f"Error processing video data: {str(e)}")
|
776 |
+
results.append((None, f"Error: {str(e)}"))
|
777 |
+
# Reset the executor for the next item
|
778 |
+
executor.reset()
|
779 |
+
|
780 |
+
return results
|
781 |
+
finally:
|
782 |
+
# Ensure cleanup of persistent worker
|
783 |
+
del executor
|