File size: 23,145 Bytes
4132075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import torch
import emoji
import re
import numpy as np
from collections import Counter
from instagrapi import Client
from transformers import (
    pipeline,
    AutoTokenizer,
    AutoModelForSequenceClassification,
    Trainer,
    TrainingArguments,
    RobertaForSequenceClassification,
    AlbertForSequenceClassification
)
from datasets import Dataset, Features, Value
from sklearn.metrics import accuracy_score, f1_score

# Configuration
CONFIG = {
    "max_length": 128,
    "batch_size": 16,
    "learning_rate": 2e-5,
    "num_train_epochs": 3,
    "few_shot_examples": 5,
    "confidence_threshold": 0.7,
    "neutral_reanalysis_threshold": 0.33
}

# Global state
cl = None
explore_reels_list = []
sentiment_analyzer = None
content_classifier = None

# Content categories
CONTENT_CATEGORIES = [
    "news", "meme", "sports", "science", "music", "movie",
    "gym", "comedy", "food", "technology", "travel", "fashion", "art", "business"
]

CATEGORY_KEYWORDS = {
    "news": {"news", "update", "breaking", "reported", "headlines"},
    "meme": {"meme", "funny", "lol", "haha", "relatable"},
    "sports": {"sports", "cricket", "football", "match", "game", "team", "score"},
    "science": {"science", "research", "discovery", "experiment", "facts", "theory"},
    "music": {"music", "song", "album", "release", "artist", "beats"},
    "movie": {"movie", "film", "bollywood", "trailer", "series", "actor"},
    "gym": {"gym", "workout", "fitness", "exercise", "training", "bodybuilding"},
    "comedy": {"comedy", "joke", "humor", "standup", "skit", "laugh"},
    "food": {"food", "recipe", "cooking", "eat", "delicious", "restaurant", "kitchen"},
    "technology": {"tech", "phone", "computer", "ai", "gadget", "software", "innovation"},
    "travel": {"travel", "trip", "vacation", "explore", "destination", "adventure"},
    "fashion": {"fashion", "style", "ootd", "outfit", "trends", "clothing"},
    "art": {"art", "artist", "painting", "drawing", "creative", "design"},
    "business": {"business", "startup", "marketing", "money", "finance", "entrepreneur"}
}

class ReelSentimentAnalyzer:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self._initialize_models()
        self._setup_emotion_mappings()

    def _initialize_models(self):
        print("Loading sentiment analysis models...")
        # English models
        self.emotion_tokenizer = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-emotion-analysis")
        self.emotion_model = AutoModelForSequenceClassification.from_pretrained(
            "finiteautomata/bertweet-base-emotion-analysis"
        ).to(self.device)
        
        self.sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
        self.sentiment_model = RobertaForSequenceClassification.from_pretrained(
            "cardiffnlp/twitter-roberta-base-sentiment-latest",
            ignore_mismatched_sizes=True
        ).to(self.device)

        # Hindi/English model
        self.hindi_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert")
        self.hindi_model = AlbertForSequenceClassification.from_pretrained(
            "ai4bharat/indic-bert",
            num_labels=3,
            id2label={0: "negative", 1: "neutral", 2: "positive"},
            label2id={"negative": 0, "neutral": 1, "positive": 2}
        ).to(self.device)
        self.hindi_label2id = self.hindi_model.config.label2id

    def _setup_emotion_mappings(self):
        self.emotion_map = {
            "joy": "positive", "love": "positive", "happy": "positive",
            "anger": "negative", "sadness": "negative", "fear": "negative",
            "surprise": "neutral", "neutral": "neutral", "disgust": "negative", "shame": "negative"
        }
        self.neutral_keywords = {
            "ad", "sponsored", "promo", "sale", "discount", "offer", "giveaway",
            "buy", "shop", "link in bio",
            "विज्ञापन", "प्रचार", "ऑफर", "डिस्काउंट", "बिक्री", "लिंक बायो में"
        }

    def train_hindi_model(self, train_data, eval_data=None):
        print("Fine-tuning Hindi sentiment model...")
        train_dataset = Dataset.from_pandas(pd.DataFrame(train_data))

        def map_labels_to_ids(examples):
            labels = []
            for label_str in examples["label"]:
                if label_str in self.hindi_label2id:
                    labels.append(self.hindi_label2id[label_str])
                else:
                    print(f"Warning: Unexpected label '{label_str}'. Mapping to neutral.")
                    labels.append(self.hindi_label2id["neutral"])
            examples["label"] = labels
            return examples

        train_dataset = train_dataset.map(map_labels_to_ids, batched=True)
        train_dataset = train_dataset.cast_column("label", Value("int64"))

        def tokenize_function(examples):
            return self.hindi_tokenizer(
                examples["text"],
                padding="max_length",
                truncation=True,
                max_length=CONFIG["max_length"]
            )

        tokenized_train = train_dataset.map(tokenize_function, batched=True)

        training_args = TrainingArguments(
            output_dir="./results",
            eval_strategy="epoch" if eval_data else "no",
            per_device_train_batch_size=CONFIG["batch_size"],
            per_device_eval_batch_size=CONFIG["batch_size"],
            learning_rate=CONFIG["learning_rate"],
            num_train_epochs=CONFIG["num_train_epochs"],
            weight_decay=0.01,
            save_strategy="no",
            logging_dir='./logs',
            logging_steps=10,
            report_to="none"
        )

        def compute_metrics(p):
            predictions, labels = p
            predictions = np.argmax(predictions, axis=1)
            return {
                "accuracy": accuracy_score(labels, predictions),
                "f1": f1_score(labels, predictions, average="weighted")
            }

        eval_dataset_processed = None
        if eval_data:
            eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_data))
            eval_dataset = eval_dataset.map(map_labels_to_ids, batched=True)
            eval_dataset_processed = eval_dataset.cast_column("label", Value("int64")).map(tokenize_function, batched=True)

        trainer = Trainer(
            model=self.hindi_model,
            args=training_args,
            train_dataset=tokenized_train,
            eval_dataset=eval_dataset_processed,
            compute_metrics=compute_metrics if eval_data else None,
        )

        trainer.train()
        self.hindi_model.save_pretrained("./fine_tuned_hindi_sentiment")
        self.hindi_tokenizer.save_pretrained("./fine_tuned_hindi_sentiment")

    def preprocess_text(self, text):
        if not text:
            return ""

        text = emoji.demojize(text, delimiters=(" ", " "))
        text = re.sub(r"http\S+|@\w+", "", text)

        abbrevs = {
            r"\bomg\b": "oh my god",
            r"\btbh\b": "to be honest",
            r"\bky\b": "kyun",
            r"\bkb\b": "kab",
            r"\bkya\b": "kya",
            r"\bkahan\b": "kahan",
            r"\bkaisa\b": "kaisa"
        }
        for pattern, replacement in abbrevs.items():
            text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)

        return re.sub(r"\s+", " ", text).strip()

    def detect_language(self, text):
        if re.search(r"[\u0900-\u097F]", text):
            return "hi"
        hinglish_keywords = ["hai", "kyun", "nahi", "kya", "acha", "bas", "yaar", "main"]
        if any(re.search(rf"\b{kw}\b", text.lower()) for kw in hinglish_keywords):
            return "hi-latin"
        return "en"

    def analyze_content(self, text):
        processed = self.preprocess_text(text)
        if not processed:
            return "neutral", 0.5, {"reason": "empty_text"}

        lang = self.detect_language(processed)

        if any(re.search(rf"\b{re.escape(kw)}\b", processed.lower()) for kw in self.neutral_keywords):
            return "neutral", 0.9, {"reason": "neutral_keyword"}

        try:
            if lang in ("hi", "hi-latin"):
                return self._analyze_hindi_content(processed)
            return self._analyze_english_content(processed)
        except Exception as e:
            print(f"Analysis error: {e}")
            return "neutral", 0.5, {"error": str(e), "original_text": text[:50]}

    def _analyze_hindi_content(self, text):
        inputs = self.hindi_tokenizer(
            text,
            return_tensors="pt",
            truncation=True,
            padding=True,
            max_length=CONFIG["max_length"]
        ).to(self.device)

        with torch.no_grad():
            outputs = self.hindi_model(**inputs)

        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
        pred_idx = torch.argmax(probs).item()
        confidence = probs[0][pred_idx].item()
        label = self.hindi_model.config.id2label[pred_idx]
        return label, confidence, {"model": "fine-tuned-indic-bert", "lang": "hi"}

    def _analyze_english_content(self, text):
        # Emotion analysis
        emotion_inputs = self.emotion_tokenizer(
            text,
            return_tensors="pt",
            truncation=True,
            max_length=CONFIG["max_length"]
        ).to(self.device)

        with torch.no_grad():
            emotion_outputs = self.emotion_model(**emotion_inputs)

        emotion_probs = torch.nn.functional.softmax(emotion_outputs.logits, dim=-1)
        emotion_pred = torch.argmax(emotion_probs).item()
        emotion_label = self.emotion_model.config.id2label[emotion_pred]
        emotion_score = emotion_probs[0][emotion_pred].item()

        # Sentiment analysis
        sentiment_inputs = self.sentiment_tokenizer(
            text,
            return_tensors="pt",
            truncation=True,
            max_length=CONFIG["max_length"]
        ).to(self.device)

        with torch.no_grad():
            sentiment_outputs = self.sentiment_model(**sentiment_inputs)

        sentiment_probs = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1)
        sentiment_pred = torch.argmax(sentiment_probs).item()
        sentiment_label_mapping = {0: 'negative', 1: 'neutral', 2: 'positive'}
        sentiment_label = sentiment_label_mapping.get(sentiment_pred, 'neutral')
        sentiment_score = sentiment_probs[0][sentiment_pred].item()

        # Combine results
        mapped_emotion = self.emotion_map.get(emotion_label, "neutral")

        if sentiment_score > CONFIG["confidence_threshold"]:
            final_label = sentiment_label
            final_confidence = sentiment_score
            reason = "high_sentiment_confidence"
        elif emotion_score > CONFIG["confidence_threshold"] and mapped_emotion != "neutral":
            final_label = mapped_emotion
            final_confidence = emotion_score
            reason = "high_emotion_confidence"
        else:
            if sentiment_label == mapped_emotion and sentiment_label != "neutral":
                final_label = sentiment_label
                final_confidence = (sentiment_score + emotion_score) / 2
                reason = "emotion_sentiment_agreement"
            elif sentiment_label != "neutral" and sentiment_score > emotion_score and sentiment_score > 0.4:
                final_label = sentiment_label
                final_confidence = sentiment_score * 0.9
                reason = "sentiment_slightly_higher"
            elif mapped_emotion != "neutral" and emotion_score > sentiment_score and emotion_score > 0.4:
                final_label = mapped_emotion
                final_confidence = emotion_score * 0.9
                reason = "emotion_slightly_higher"
            else:
                final_label = "neutral"
                final_confidence = 0.6
                reason = "fallback_to_neutral"

        return final_label, final_confidence, {
            "emotion_label": emotion_label,
            "emotion_score": emotion_score,
            "sentiment_label": sentiment_label,
            "sentiment_score": sentiment_score,
            "mapped_emotion": mapped_emotion,
            "model": "ensemble",
            "lang": "en",
            "reason": reason
        }

    def analyze_reels(self, reels, max_to_analyze=100):
        print(f"Analyzing {max_to_analyze} reels...")
        results = Counter()
        detailed_results = []

        for i, reel in enumerate(reels[:max_to_analyze], 1):
            caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
            label, confidence, details = self.analyze_content(caption)
            results[label] += 1
            detailed_results.append({
                "reel_id": reel.id,
                "text": caption,
                "label": label,
                "confidence": confidence,
                "details": details
            })

        if sum(results.values()) > 0 and results["neutral"] / sum(results.values()) > CONFIG["neutral_reanalysis_threshold"]:
            self._reduce_neutrals(results, detailed_results)

        return results, detailed_results

    def _reduce_neutrals(self, results, detailed_results):
        neutrals_to_recheck = [item for item in detailed_results if item["label"] == "neutral" and item["confidence"] < 0.8]

        for item in neutrals_to_recheck:
            text_lower = self.preprocess_text(item["text"]).lower()
            pos_keywords = {"amazing", "love", "best", "fantastic", "awesome", "superb", "great"}
            neg_keywords = {"hate", "worst", "bad", "terrible", "awful", "disappointed", "horrible", "cringe"}

            is_strong_pos = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in pos_keywords)
            is_strong_neg = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in neg_keywords)

            if is_strong_pos and not is_strong_neg:
                results["neutral"] -= 1
                results["positive"] += 1
                item.update({
                    "label": "positive",
                    "confidence": min(0.95, item["confidence"] + 0.3),
                    "reanalyzed": True,
                    "reanalysis_reason": "strong_pos_keywords"
                })
            elif is_strong_neg and not is_strong_pos:
                results["neutral"] -= 1
                results["negative"] += 1
                item.update({
                    "label": "negative",
                    "confidence": min(0.95, item["confidence"] + 0.3),
                    "reanalyzed": True,
                    "reanalysis_reason": "strong_neg_keywords"
                })

def plot_sentiment_pie(results, title="Reels Sentiment Analysis"):
    sizes = [results.get('positive', 0), results.get('neutral', 0), results.get('negative', 0)]
    if sum(sizes) == 0:
        return None

    labels = ['Positive', 'Neutral', 'Negative']
    colors = ['#4CAF50', '#FFC107', '#F44336']
    explode = (0.05, 0, 0.05)

    fig, ax = plt.subplots(figsize=(8, 6))
    ax.pie(sizes, explode=explode, labels=labels, colors=colors,
           autopct='%1.1f%%', shadow=True, startangle=140,
           textprops={'fontsize': 12, 'color': 'black'})
    ax.axis('equal')
    plt.title(title, fontsize=16, pad=20)
    plt.tight_layout()
    return fig

def plot_category_distribution(counter, title="Reels Content Distribution"):
    total = sum(counter.values())
    if total == 0:
        return None

    threshold = total * 0.02
    other_count = 0
    labels = []
    sizes = []

    for category, count in counter.most_common():
        if count >= threshold and category != "other":
            labels.append(category.replace('_', ' ').title())
            sizes.append(count)
        else:
            other_count += count

    if other_count > 0:
        labels.append("Other")
        sizes.append(other_count)

    if not sizes:
        return None

    fig, ax = plt.subplots(figsize=(10, 8))
    colors = plt.cm.viridis(np.linspace(0, 1, len(sizes)))
    ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140, colors=colors,
           wedgeprops={'edgecolor': 'white', 'linewidth': 1}, textprops={'fontsize': 11})
    plt.title(title, pad=20, fontsize=15)
    plt.axis('equal')
    plt.tight_layout()
    return fig

def preprocess_text_cat(text):
    if not text:
        return ""
    text = re.sub(r"http\S+|@\w+|#\w+", "", text).lower()
    return re.sub(r"\s+", " ", text).strip()

def classify_reel_content(text):
    global content_classifier

    processed = preprocess_text_cat(text)
    if not processed or len(processed.split()) < 2:
        return "other", {"reason": "short_text"}

    for category, keywords in CATEGORY_KEYWORDS.items():
        if any(re.search(rf"\b{re.escape(keyword)}\b", processed) for keyword in keywords):
            return category, {"reason": "keyword_match"}

    if content_classifier is None:
        return "other", {"reason": "classifier_not_initialized"}

    try:
        result = content_classifier(processed[:256], CONTENT_CATEGORIES, multi_label=False)
        top_label = result['labels'][0]
        top_score = result['scores'][0]
        return top_label if top_score > 0.5 else "other", {"reason": "model_prediction", "score": top_score}
    except Exception as e:
        print(f"Classification error: {e}")
        return "other", {"reason": "classification_error"}

# Gradio Interface Functions
def login_gradio_auto():
    global cl
    try:
        PASSWORD = "qwerty@desk"  # Replace with your actual password
    except Exception as e:
        return f"Error accessing password: {e}", gr.update(visible=False)

    if not PASSWORD:
        return "Error: Instagram password not found.", gr.update(visible=False)

    cl = Client()
    try:
        cl.login("jattman1993", PASSWORD)
        return f"Successfully logged in as jattman1993", gr.update(visible=False)
    except Exception as e:
        cl = None
        error_message = str(e)
        if "Two factor challenged" in error_message or "challenge_required" in error_message:
            return f"Login failed: Two-factor authentication required.", gr.update(visible=True)
        return f"Error during login: {error_message}", gr.update(visible=False)

def submit_otp_gradio(otp_code):
    global cl
    if cl is None:
        return "Error: Not logged in.", "", gr.update(visible=False)

    try:
        cl.two_factor_login(otp_code)
        return f"OTP successful. Logged in as jattman1993.", "", gr.update(visible=False)
    except Exception as e:
        return f"OTP failed: {e}", "", gr.update(visible=True)

def fetch_reels_gradio():
    global cl, explore_reels_list
    if cl is None:
        explore_reels_list = []
        return "Error: Not logged in."

    try:
        explore_reels_list = cl.explore_reels()[:100]
        return f"Fetched {len(explore_reels_list)} reels."
    except Exception as e:
        explore_reels_list = []
        return f"Error fetching reels: {e}"

def analyze_reels_gradio(max_to_analyze):
    global explore_reels_list, sentiment_analyzer, content_classifier

    if not explore_reels_list:
        return "Error: No reels fetched.", None, None

    num_reels = min(max_to_analyze, len(explore_reels_list))
    reels_to_analyze = explore_reels_list[:num_reels]

    if sentiment_analyzer is None:
        sentiment_analyzer = ReelSentimentAnalyzer()

    if content_classifier is None:
        content_classifier = pipeline(
            "zero-shot-classification",
            model="facebook/bart-large-mnli",
            device=0 if torch.cuda.is_available() else -1
        )

    status_messages = []
    sentiment_plot = None
    content_plot = None

    # Sentiment Analysis
    try:
        sentiment_results, _ = sentiment_analyzer.analyze_reels(reels_to_analyze)
        sentiment_plot = plot_sentiment_pie(sentiment_results)
        status_messages.append("Sentiment analysis complete.")
    except Exception as e:
        status_messages.append(f"Sentiment error: {e}")

    # Content Analysis
    try:
        category_counts = Counter()
        for reel in reels_to_analyze:
            caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
            category, _ = classify_reel_content(caption)
            category_counts[category] += 1
        content_plot = plot_category_distribution(category_counts)
        status_messages.append("Content analysis complete.")
    except Exception as e:
        status_messages.append(f"Content error: {e}")

    return "\n".join(status_messages), sentiment_plot, content_plot

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Instagram Reels Analysis")

    # Login Section
    with gr.Row():
        connect_btn = gr.Button("Connect Instagram")
    login_status = gr.Label(label="Login Status")

    # OTP Input (hidden initially)
    with gr.Row(visible=False) as otp_row:
        otp_input = gr.Textbox(label="Enter OTP Code")
        otp_submit_btn = gr.Button("Submit OTP")

    # Fetch Section
    with gr.Row():
        fetch_btn = gr.Button("Fetch Reels")
    fetch_status = gr.Label(label="Fetch Status")

    # Analysis Section
    with gr.Row():
        max_reels = gr.Slider(1, 100, value=10, step=1, label="Number of Reels to Analyze")
        analyze_btn = gr.Button("Analyze Reels")
    analyze_status = gr.Label(label="Analysis Status")

    # Results Section
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Sentiment Analysis")
            sentiment_output = gr.Plot(label="Sentiment Distribution")
        with gr.Column():
            gr.Markdown("## Content Analysis")
            content_output = gr.Plot(label="Content Distribution")

    # Event handlers
    connect_btn.click(
        login_gradio_auto,
        inputs=None,
        outputs=[login_status, otp_row]
    )
    otp_submit_btn.click(
        submit_otp_gradio,
        inputs=otp_input,
        outputs=[login_status, otp_input, otp_row]
    )
    fetch_btn.click(
        fetch_reels_gradio,
        inputs=None,
        outputs=fetch_status
    )
    analyze_btn.click(
        analyze_reels_gradio,
        inputs=max_reels,
        outputs=[analyze_status, sentiment_output, content_output]
    )

if __name__ == "__main__":
    demo.launch()