Spaces:
Runtime error
Runtime error
File size: 23,145 Bytes
4132075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import torch
import emoji
import re
import numpy as np
from collections import Counter
from instagrapi import Client
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments,
RobertaForSequenceClassification,
AlbertForSequenceClassification
)
from datasets import Dataset, Features, Value
from sklearn.metrics import accuracy_score, f1_score
# Configuration
CONFIG = {
"max_length": 128,
"batch_size": 16,
"learning_rate": 2e-5,
"num_train_epochs": 3,
"few_shot_examples": 5,
"confidence_threshold": 0.7,
"neutral_reanalysis_threshold": 0.33
}
# Global state
cl = None
explore_reels_list = []
sentiment_analyzer = None
content_classifier = None
# Content categories
CONTENT_CATEGORIES = [
"news", "meme", "sports", "science", "music", "movie",
"gym", "comedy", "food", "technology", "travel", "fashion", "art", "business"
]
CATEGORY_KEYWORDS = {
"news": {"news", "update", "breaking", "reported", "headlines"},
"meme": {"meme", "funny", "lol", "haha", "relatable"},
"sports": {"sports", "cricket", "football", "match", "game", "team", "score"},
"science": {"science", "research", "discovery", "experiment", "facts", "theory"},
"music": {"music", "song", "album", "release", "artist", "beats"},
"movie": {"movie", "film", "bollywood", "trailer", "series", "actor"},
"gym": {"gym", "workout", "fitness", "exercise", "training", "bodybuilding"},
"comedy": {"comedy", "joke", "humor", "standup", "skit", "laugh"},
"food": {"food", "recipe", "cooking", "eat", "delicious", "restaurant", "kitchen"},
"technology": {"tech", "phone", "computer", "ai", "gadget", "software", "innovation"},
"travel": {"travel", "trip", "vacation", "explore", "destination", "adventure"},
"fashion": {"fashion", "style", "ootd", "outfit", "trends", "clothing"},
"art": {"art", "artist", "painting", "drawing", "creative", "design"},
"business": {"business", "startup", "marketing", "money", "finance", "entrepreneur"}
}
class ReelSentimentAnalyzer:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self._initialize_models()
self._setup_emotion_mappings()
def _initialize_models(self):
print("Loading sentiment analysis models...")
# English models
self.emotion_tokenizer = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-emotion-analysis")
self.emotion_model = AutoModelForSequenceClassification.from_pretrained(
"finiteautomata/bertweet-base-emotion-analysis"
).to(self.device)
self.sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
self.sentiment_model = RobertaForSequenceClassification.from_pretrained(
"cardiffnlp/twitter-roberta-base-sentiment-latest",
ignore_mismatched_sizes=True
).to(self.device)
# Hindi/English model
self.hindi_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert")
self.hindi_model = AlbertForSequenceClassification.from_pretrained(
"ai4bharat/indic-bert",
num_labels=3,
id2label={0: "negative", 1: "neutral", 2: "positive"},
label2id={"negative": 0, "neutral": 1, "positive": 2}
).to(self.device)
self.hindi_label2id = self.hindi_model.config.label2id
def _setup_emotion_mappings(self):
self.emotion_map = {
"joy": "positive", "love": "positive", "happy": "positive",
"anger": "negative", "sadness": "negative", "fear": "negative",
"surprise": "neutral", "neutral": "neutral", "disgust": "negative", "shame": "negative"
}
self.neutral_keywords = {
"ad", "sponsored", "promo", "sale", "discount", "offer", "giveaway",
"buy", "shop", "link in bio",
"विज्ञापन", "प्रचार", "ऑफर", "डिस्काउंट", "बिक्री", "लिंक बायो में"
}
def train_hindi_model(self, train_data, eval_data=None):
print("Fine-tuning Hindi sentiment model...")
train_dataset = Dataset.from_pandas(pd.DataFrame(train_data))
def map_labels_to_ids(examples):
labels = []
for label_str in examples["label"]:
if label_str in self.hindi_label2id:
labels.append(self.hindi_label2id[label_str])
else:
print(f"Warning: Unexpected label '{label_str}'. Mapping to neutral.")
labels.append(self.hindi_label2id["neutral"])
examples["label"] = labels
return examples
train_dataset = train_dataset.map(map_labels_to_ids, batched=True)
train_dataset = train_dataset.cast_column("label", Value("int64"))
def tokenize_function(examples):
return self.hindi_tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=CONFIG["max_length"]
)
tokenized_train = train_dataset.map(tokenize_function, batched=True)
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch" if eval_data else "no",
per_device_train_batch_size=CONFIG["batch_size"],
per_device_eval_batch_size=CONFIG["batch_size"],
learning_rate=CONFIG["learning_rate"],
num_train_epochs=CONFIG["num_train_epochs"],
weight_decay=0.01,
save_strategy="no",
logging_dir='./logs',
logging_steps=10,
report_to="none"
)
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=1)
return {
"accuracy": accuracy_score(labels, predictions),
"f1": f1_score(labels, predictions, average="weighted")
}
eval_dataset_processed = None
if eval_data:
eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_data))
eval_dataset = eval_dataset.map(map_labels_to_ids, batched=True)
eval_dataset_processed = eval_dataset.cast_column("label", Value("int64")).map(tokenize_function, batched=True)
trainer = Trainer(
model=self.hindi_model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=eval_dataset_processed,
compute_metrics=compute_metrics if eval_data else None,
)
trainer.train()
self.hindi_model.save_pretrained("./fine_tuned_hindi_sentiment")
self.hindi_tokenizer.save_pretrained("./fine_tuned_hindi_sentiment")
def preprocess_text(self, text):
if not text:
return ""
text = emoji.demojize(text, delimiters=(" ", " "))
text = re.sub(r"http\S+|@\w+", "", text)
abbrevs = {
r"\bomg\b": "oh my god",
r"\btbh\b": "to be honest",
r"\bky\b": "kyun",
r"\bkb\b": "kab",
r"\bkya\b": "kya",
r"\bkahan\b": "kahan",
r"\bkaisa\b": "kaisa"
}
for pattern, replacement in abbrevs.items():
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
return re.sub(r"\s+", " ", text).strip()
def detect_language(self, text):
if re.search(r"[\u0900-\u097F]", text):
return "hi"
hinglish_keywords = ["hai", "kyun", "nahi", "kya", "acha", "bas", "yaar", "main"]
if any(re.search(rf"\b{kw}\b", text.lower()) for kw in hinglish_keywords):
return "hi-latin"
return "en"
def analyze_content(self, text):
processed = self.preprocess_text(text)
if not processed:
return "neutral", 0.5, {"reason": "empty_text"}
lang = self.detect_language(processed)
if any(re.search(rf"\b{re.escape(kw)}\b", processed.lower()) for kw in self.neutral_keywords):
return "neutral", 0.9, {"reason": "neutral_keyword"}
try:
if lang in ("hi", "hi-latin"):
return self._analyze_hindi_content(processed)
return self._analyze_english_content(processed)
except Exception as e:
print(f"Analysis error: {e}")
return "neutral", 0.5, {"error": str(e), "original_text": text[:50]}
def _analyze_hindi_content(self, text):
inputs = self.hindi_tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=CONFIG["max_length"]
).to(self.device)
with torch.no_grad():
outputs = self.hindi_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
pred_idx = torch.argmax(probs).item()
confidence = probs[0][pred_idx].item()
label = self.hindi_model.config.id2label[pred_idx]
return label, confidence, {"model": "fine-tuned-indic-bert", "lang": "hi"}
def _analyze_english_content(self, text):
# Emotion analysis
emotion_inputs = self.emotion_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=CONFIG["max_length"]
).to(self.device)
with torch.no_grad():
emotion_outputs = self.emotion_model(**emotion_inputs)
emotion_probs = torch.nn.functional.softmax(emotion_outputs.logits, dim=-1)
emotion_pred = torch.argmax(emotion_probs).item()
emotion_label = self.emotion_model.config.id2label[emotion_pred]
emotion_score = emotion_probs[0][emotion_pred].item()
# Sentiment analysis
sentiment_inputs = self.sentiment_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=CONFIG["max_length"]
).to(self.device)
with torch.no_grad():
sentiment_outputs = self.sentiment_model(**sentiment_inputs)
sentiment_probs = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1)
sentiment_pred = torch.argmax(sentiment_probs).item()
sentiment_label_mapping = {0: 'negative', 1: 'neutral', 2: 'positive'}
sentiment_label = sentiment_label_mapping.get(sentiment_pred, 'neutral')
sentiment_score = sentiment_probs[0][sentiment_pred].item()
# Combine results
mapped_emotion = self.emotion_map.get(emotion_label, "neutral")
if sentiment_score > CONFIG["confidence_threshold"]:
final_label = sentiment_label
final_confidence = sentiment_score
reason = "high_sentiment_confidence"
elif emotion_score > CONFIG["confidence_threshold"] and mapped_emotion != "neutral":
final_label = mapped_emotion
final_confidence = emotion_score
reason = "high_emotion_confidence"
else:
if sentiment_label == mapped_emotion and sentiment_label != "neutral":
final_label = sentiment_label
final_confidence = (sentiment_score + emotion_score) / 2
reason = "emotion_sentiment_agreement"
elif sentiment_label != "neutral" and sentiment_score > emotion_score and sentiment_score > 0.4:
final_label = sentiment_label
final_confidence = sentiment_score * 0.9
reason = "sentiment_slightly_higher"
elif mapped_emotion != "neutral" and emotion_score > sentiment_score and emotion_score > 0.4:
final_label = mapped_emotion
final_confidence = emotion_score * 0.9
reason = "emotion_slightly_higher"
else:
final_label = "neutral"
final_confidence = 0.6
reason = "fallback_to_neutral"
return final_label, final_confidence, {
"emotion_label": emotion_label,
"emotion_score": emotion_score,
"sentiment_label": sentiment_label,
"sentiment_score": sentiment_score,
"mapped_emotion": mapped_emotion,
"model": "ensemble",
"lang": "en",
"reason": reason
}
def analyze_reels(self, reels, max_to_analyze=100):
print(f"Analyzing {max_to_analyze} reels...")
results = Counter()
detailed_results = []
for i, reel in enumerate(reels[:max_to_analyze], 1):
caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
label, confidence, details = self.analyze_content(caption)
results[label] += 1
detailed_results.append({
"reel_id": reel.id,
"text": caption,
"label": label,
"confidence": confidence,
"details": details
})
if sum(results.values()) > 0 and results["neutral"] / sum(results.values()) > CONFIG["neutral_reanalysis_threshold"]:
self._reduce_neutrals(results, detailed_results)
return results, detailed_results
def _reduce_neutrals(self, results, detailed_results):
neutrals_to_recheck = [item for item in detailed_results if item["label"] == "neutral" and item["confidence"] < 0.8]
for item in neutrals_to_recheck:
text_lower = self.preprocess_text(item["text"]).lower()
pos_keywords = {"amazing", "love", "best", "fantastic", "awesome", "superb", "great"}
neg_keywords = {"hate", "worst", "bad", "terrible", "awful", "disappointed", "horrible", "cringe"}
is_strong_pos = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in pos_keywords)
is_strong_neg = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in neg_keywords)
if is_strong_pos and not is_strong_neg:
results["neutral"] -= 1
results["positive"] += 1
item.update({
"label": "positive",
"confidence": min(0.95, item["confidence"] + 0.3),
"reanalyzed": True,
"reanalysis_reason": "strong_pos_keywords"
})
elif is_strong_neg and not is_strong_pos:
results["neutral"] -= 1
results["negative"] += 1
item.update({
"label": "negative",
"confidence": min(0.95, item["confidence"] + 0.3),
"reanalyzed": True,
"reanalysis_reason": "strong_neg_keywords"
})
def plot_sentiment_pie(results, title="Reels Sentiment Analysis"):
sizes = [results.get('positive', 0), results.get('neutral', 0), results.get('negative', 0)]
if sum(sizes) == 0:
return None
labels = ['Positive', 'Neutral', 'Negative']
colors = ['#4CAF50', '#FFC107', '#F44336']
explode = (0.05, 0, 0.05)
fig, ax = plt.subplots(figsize=(8, 6))
ax.pie(sizes, explode=explode, labels=labels, colors=colors,
autopct='%1.1f%%', shadow=True, startangle=140,
textprops={'fontsize': 12, 'color': 'black'})
ax.axis('equal')
plt.title(title, fontsize=16, pad=20)
plt.tight_layout()
return fig
def plot_category_distribution(counter, title="Reels Content Distribution"):
total = sum(counter.values())
if total == 0:
return None
threshold = total * 0.02
other_count = 0
labels = []
sizes = []
for category, count in counter.most_common():
if count >= threshold and category != "other":
labels.append(category.replace('_', ' ').title())
sizes.append(count)
else:
other_count += count
if other_count > 0:
labels.append("Other")
sizes.append(other_count)
if not sizes:
return None
fig, ax = plt.subplots(figsize=(10, 8))
colors = plt.cm.viridis(np.linspace(0, 1, len(sizes)))
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140, colors=colors,
wedgeprops={'edgecolor': 'white', 'linewidth': 1}, textprops={'fontsize': 11})
plt.title(title, pad=20, fontsize=15)
plt.axis('equal')
plt.tight_layout()
return fig
def preprocess_text_cat(text):
if not text:
return ""
text = re.sub(r"http\S+|@\w+|#\w+", "", text).lower()
return re.sub(r"\s+", " ", text).strip()
def classify_reel_content(text):
global content_classifier
processed = preprocess_text_cat(text)
if not processed or len(processed.split()) < 2:
return "other", {"reason": "short_text"}
for category, keywords in CATEGORY_KEYWORDS.items():
if any(re.search(rf"\b{re.escape(keyword)}\b", processed) for keyword in keywords):
return category, {"reason": "keyword_match"}
if content_classifier is None:
return "other", {"reason": "classifier_not_initialized"}
try:
result = content_classifier(processed[:256], CONTENT_CATEGORIES, multi_label=False)
top_label = result['labels'][0]
top_score = result['scores'][0]
return top_label if top_score > 0.5 else "other", {"reason": "model_prediction", "score": top_score}
except Exception as e:
print(f"Classification error: {e}")
return "other", {"reason": "classification_error"}
# Gradio Interface Functions
def login_gradio_auto():
global cl
try:
PASSWORD = "qwerty@desk" # Replace with your actual password
except Exception as e:
return f"Error accessing password: {e}", gr.update(visible=False)
if not PASSWORD:
return "Error: Instagram password not found.", gr.update(visible=False)
cl = Client()
try:
cl.login("jattman1993", PASSWORD)
return f"Successfully logged in as jattman1993", gr.update(visible=False)
except Exception as e:
cl = None
error_message = str(e)
if "Two factor challenged" in error_message or "challenge_required" in error_message:
return f"Login failed: Two-factor authentication required.", gr.update(visible=True)
return f"Error during login: {error_message}", gr.update(visible=False)
def submit_otp_gradio(otp_code):
global cl
if cl is None:
return "Error: Not logged in.", "", gr.update(visible=False)
try:
cl.two_factor_login(otp_code)
return f"OTP successful. Logged in as jattman1993.", "", gr.update(visible=False)
except Exception as e:
return f"OTP failed: {e}", "", gr.update(visible=True)
def fetch_reels_gradio():
global cl, explore_reels_list
if cl is None:
explore_reels_list = []
return "Error: Not logged in."
try:
explore_reels_list = cl.explore_reels()[:100]
return f"Fetched {len(explore_reels_list)} reels."
except Exception as e:
explore_reels_list = []
return f"Error fetching reels: {e}"
def analyze_reels_gradio(max_to_analyze):
global explore_reels_list, sentiment_analyzer, content_classifier
if not explore_reels_list:
return "Error: No reels fetched.", None, None
num_reels = min(max_to_analyze, len(explore_reels_list))
reels_to_analyze = explore_reels_list[:num_reels]
if sentiment_analyzer is None:
sentiment_analyzer = ReelSentimentAnalyzer()
if content_classifier is None:
content_classifier = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli",
device=0 if torch.cuda.is_available() else -1
)
status_messages = []
sentiment_plot = None
content_plot = None
# Sentiment Analysis
try:
sentiment_results, _ = sentiment_analyzer.analyze_reels(reels_to_analyze)
sentiment_plot = plot_sentiment_pie(sentiment_results)
status_messages.append("Sentiment analysis complete.")
except Exception as e:
status_messages.append(f"Sentiment error: {e}")
# Content Analysis
try:
category_counts = Counter()
for reel in reels_to_analyze:
caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
category, _ = classify_reel_content(caption)
category_counts[category] += 1
content_plot = plot_category_distribution(category_counts)
status_messages.append("Content analysis complete.")
except Exception as e:
status_messages.append(f"Content error: {e}")
return "\n".join(status_messages), sentiment_plot, content_plot
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Instagram Reels Analysis")
# Login Section
with gr.Row():
connect_btn = gr.Button("Connect Instagram")
login_status = gr.Label(label="Login Status")
# OTP Input (hidden initially)
with gr.Row(visible=False) as otp_row:
otp_input = gr.Textbox(label="Enter OTP Code")
otp_submit_btn = gr.Button("Submit OTP")
# Fetch Section
with gr.Row():
fetch_btn = gr.Button("Fetch Reels")
fetch_status = gr.Label(label="Fetch Status")
# Analysis Section
with gr.Row():
max_reels = gr.Slider(1, 100, value=10, step=1, label="Number of Reels to Analyze")
analyze_btn = gr.Button("Analyze Reels")
analyze_status = gr.Label(label="Analysis Status")
# Results Section
with gr.Row():
with gr.Column():
gr.Markdown("## Sentiment Analysis")
sentiment_output = gr.Plot(label="Sentiment Distribution")
with gr.Column():
gr.Markdown("## Content Analysis")
content_output = gr.Plot(label="Content Distribution")
# Event handlers
connect_btn.click(
login_gradio_auto,
inputs=None,
outputs=[login_status, otp_row]
)
otp_submit_btn.click(
submit_otp_gradio,
inputs=otp_input,
outputs=[login_status, otp_input, otp_row]
)
fetch_btn.click(
fetch_reels_gradio,
inputs=None,
outputs=fetch_status
)
analyze_btn.click(
analyze_reels_gradio,
inputs=max_reels,
outputs=[analyze_status, sentiment_output, content_output]
)
if __name__ == "__main__":
demo.launch() |