Reel_Analyzer / deploy (1).py
Agrannya's picture
Upload folder using huggingface_hub
29f8f72 verified
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import torch
import emoji
import re
import numpy as np
from collections import Counter
from instagrapi import Client
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments,
RobertaForSequenceClassification,
AlbertForSequenceClassification
)
from datasets import Dataset, Features, Value
from sklearn.metrics import accuracy_score, f1_score
# Configuration
CONFIG = {
"max_length": 128,
"batch_size": 16,
"learning_rate": 2e-5,
"num_train_epochs": 3,
"few_shot_examples": 5,
"confidence_threshold": 0.7,
"neutral_reanalysis_threshold": 0.33
}
# Global state
cl = None
explore_reels_list = []
sentiment_analyzer = None
content_classifier = None
# Content categories
CONTENT_CATEGORIES = [
"news", "meme", "sports", "science", "music", "movie",
"gym", "comedy", "food", "technology", "travel", "fashion", "art", "business"
]
CATEGORY_KEYWORDS = {
"news": {"news", "update", "breaking", "reported", "headlines"},
"meme": {"meme", "funny", "lol", "haha", "relatable"},
"sports": {"sports", "cricket", "football", "match", "game", "team", "score"},
"science": {"science", "research", "discovery", "experiment", "facts", "theory"},
"music": {"music", "song", "album", "release", "artist", "beats"},
"movie": {"movie", "film", "bollywood", "trailer", "series", "actor"},
"gym": {"gym", "workout", "fitness", "exercise", "training", "bodybuilding"},
"comedy": {"comedy", "joke", "humor", "standup", "skit", "laugh"},
"food": {"food", "recipe", "cooking", "eat", "delicious", "restaurant", "kitchen"},
"technology": {"tech", "phone", "computer", "ai", "gadget", "software", "innovation"},
"travel": {"travel", "trip", "vacation", "explore", "destination", "adventure"},
"fashion": {"fashion", "style", "ootd", "outfit", "trends", "clothing"},
"art": {"art", "artist", "painting", "drawing", "creative", "design"},
"business": {"business", "startup", "marketing", "money", "finance", "entrepreneur"}
}
class ReelSentimentAnalyzer:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self._initialize_models()
self._setup_emotion_mappings()
def _initialize_models(self):
print("Loading sentiment analysis models...")
# English models
self.emotion_tokenizer = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-emotion-analysis")
self.emotion_model = AutoModelForSequenceClassification.from_pretrained(
"finiteautomata/bertweet-base-emotion-analysis"
).to(self.device)
self.sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
self.sentiment_model = RobertaForSequenceClassification.from_pretrained(
"cardiffnlp/twitter-roberta-base-sentiment-latest",
ignore_mismatched_sizes=True
).to(self.device)
# Hindi/English model
self.hindi_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert")
self.hindi_model = AlbertForSequenceClassification.from_pretrained(
"ai4bharat/indic-bert",
num_labels=3,
id2label={0: "negative", 1: "neutral", 2: "positive"},
label2id={"negative": 0, "neutral": 1, "positive": 2}
).to(self.device)
self.hindi_label2id = self.hindi_model.config.label2id
def _setup_emotion_mappings(self):
self.emotion_map = {
"joy": "positive", "love": "positive", "happy": "positive",
"anger": "negative", "sadness": "negative", "fear": "negative",
"surprise": "neutral", "neutral": "neutral", "disgust": "negative", "shame": "negative"
}
self.neutral_keywords = {
"ad", "sponsored", "promo", "sale", "discount", "offer", "giveaway",
"buy", "shop", "link in bio",
"विज्ञापन", "प्रचार", "ऑफर", "डिस्काउंट", "बिक्री", "लिंक बायो में"
}
def train_hindi_model(self, train_data, eval_data=None):
print("Fine-tuning Hindi sentiment model...")
train_dataset = Dataset.from_pandas(pd.DataFrame(train_data))
def map_labels_to_ids(examples):
labels = []
for label_str in examples["label"]:
if label_str in self.hindi_label2id:
labels.append(self.hindi_label2id[label_str])
else:
print(f"Warning: Unexpected label '{label_str}'. Mapping to neutral.")
labels.append(self.hindi_label2id["neutral"])
examples["label"] = labels
return examples
train_dataset = train_dataset.map(map_labels_to_ids, batched=True)
train_dataset = train_dataset.cast_column("label", Value("int64"))
def tokenize_function(examples):
return self.hindi_tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=CONFIG["max_length"]
)
tokenized_train = train_dataset.map(tokenize_function, batched=True)
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch" if eval_data else "no",
per_device_train_batch_size=CONFIG["batch_size"],
per_device_eval_batch_size=CONFIG["batch_size"],
learning_rate=CONFIG["learning_rate"],
num_train_epochs=CONFIG["num_train_epochs"],
weight_decay=0.01,
save_strategy="no",
logging_dir='./logs',
logging_steps=10,
report_to="none"
)
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=1)
return {
"accuracy": accuracy_score(labels, predictions),
"f1": f1_score(labels, predictions, average="weighted")
}
eval_dataset_processed = None
if eval_data:
eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_data))
eval_dataset = eval_dataset.map(map_labels_to_ids, batched=True)
eval_dataset_processed = eval_dataset.cast_column("label", Value("int64")).map(tokenize_function, batched=True)
trainer = Trainer(
model=self.hindi_model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=eval_dataset_processed,
compute_metrics=compute_metrics if eval_data else None,
)
trainer.train()
self.hindi_model.save_pretrained("./fine_tuned_hindi_sentiment")
self.hindi_tokenizer.save_pretrained("./fine_tuned_hindi_sentiment")
def preprocess_text(self, text):
if not text:
return ""
text = emoji.demojize(text, delimiters=(" ", " "))
text = re.sub(r"http\S+|@\w+", "", text)
abbrevs = {
r"\bomg\b": "oh my god",
r"\btbh\b": "to be honest",
r"\bky\b": "kyun",
r"\bkb\b": "kab",
r"\bkya\b": "kya",
r"\bkahan\b": "kahan",
r"\bkaisa\b": "kaisa"
}
for pattern, replacement in abbrevs.items():
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
return re.sub(r"\s+", " ", text).strip()
def detect_language(self, text):
if re.search(r"[\u0900-\u097F]", text):
return "hi"
hinglish_keywords = ["hai", "kyun", "nahi", "kya", "acha", "bas", "yaar", "main"]
if any(re.search(rf"\b{kw}\b", text.lower()) for kw in hinglish_keywords):
return "hi-latin"
return "en"
def analyze_content(self, text):
processed = self.preprocess_text(text)
if not processed:
return "neutral", 0.5, {"reason": "empty_text"}
lang = self.detect_language(processed)
if any(re.search(rf"\b{re.escape(kw)}\b", processed.lower()) for kw in self.neutral_keywords):
return "neutral", 0.9, {"reason": "neutral_keyword"}
try:
if lang in ("hi", "hi-latin"):
return self._analyze_hindi_content(processed)
return self._analyze_english_content(processed)
except Exception as e:
print(f"Analysis error: {e}")
return "neutral", 0.5, {"error": str(e), "original_text": text[:50]}
def _analyze_hindi_content(self, text):
inputs = self.hindi_tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=CONFIG["max_length"]
).to(self.device)
with torch.no_grad():
outputs = self.hindi_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
pred_idx = torch.argmax(probs).item()
confidence = probs[0][pred_idx].item()
label = self.hindi_model.config.id2label[pred_idx]
return label, confidence, {"model": "fine-tuned-indic-bert", "lang": "hi"}
def _analyze_english_content(self, text):
# Emotion analysis
emotion_inputs = self.emotion_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=CONFIG["max_length"]
).to(self.device)
with torch.no_grad():
emotion_outputs = self.emotion_model(**emotion_inputs)
emotion_probs = torch.nn.functional.softmax(emotion_outputs.logits, dim=-1)
emotion_pred = torch.argmax(emotion_probs).item()
emotion_label = self.emotion_model.config.id2label[emotion_pred]
emotion_score = emotion_probs[0][emotion_pred].item()
# Sentiment analysis
sentiment_inputs = self.sentiment_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=CONFIG["max_length"]
).to(self.device)
with torch.no_grad():
sentiment_outputs = self.sentiment_model(**sentiment_inputs)
sentiment_probs = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1)
sentiment_pred = torch.argmax(sentiment_probs).item()
sentiment_label_mapping = {0: 'negative', 1: 'neutral', 2: 'positive'}
sentiment_label = sentiment_label_mapping.get(sentiment_pred, 'neutral')
sentiment_score = sentiment_probs[0][sentiment_pred].item()
# Combine results
mapped_emotion = self.emotion_map.get(emotion_label, "neutral")
if sentiment_score > CONFIG["confidence_threshold"]:
final_label = sentiment_label
final_confidence = sentiment_score
reason = "high_sentiment_confidence"
elif emotion_score > CONFIG["confidence_threshold"] and mapped_emotion != "neutral":
final_label = mapped_emotion
final_confidence = emotion_score
reason = "high_emotion_confidence"
else:
if sentiment_label == mapped_emotion and sentiment_label != "neutral":
final_label = sentiment_label
final_confidence = (sentiment_score + emotion_score) / 2
reason = "emotion_sentiment_agreement"
elif sentiment_label != "neutral" and sentiment_score > emotion_score and sentiment_score > 0.4:
final_label = sentiment_label
final_confidence = sentiment_score * 0.9
reason = "sentiment_slightly_higher"
elif mapped_emotion != "neutral" and emotion_score > sentiment_score and emotion_score > 0.4:
final_label = mapped_emotion
final_confidence = emotion_score * 0.9
reason = "emotion_slightly_higher"
else:
final_label = "neutral"
final_confidence = 0.6
reason = "fallback_to_neutral"
return final_label, final_confidence, {
"emotion_label": emotion_label,
"emotion_score": emotion_score,
"sentiment_label": sentiment_label,
"sentiment_score": sentiment_score,
"mapped_emotion": mapped_emotion,
"model": "ensemble",
"lang": "en",
"reason": reason
}
def analyze_reels(self, reels, max_to_analyze=100):
print(f"Analyzing {max_to_analyze} reels...")
results = Counter()
detailed_results = []
for i, reel in enumerate(reels[:max_to_analyze], 1):
caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
label, confidence, details = self.analyze_content(caption)
results[label] += 1
detailed_results.append({
"reel_id": reel.id,
"text": caption,
"label": label,
"confidence": confidence,
"details": details
})
if sum(results.values()) > 0 and results["neutral"] / sum(results.values()) > CONFIG["neutral_reanalysis_threshold"]:
self._reduce_neutrals(results, detailed_results)
return results, detailed_results
def _reduce_neutrals(self, results, detailed_results):
neutrals_to_recheck = [item for item in detailed_results if item["label"] == "neutral" and item["confidence"] < 0.8]
for item in neutrals_to_recheck:
text_lower = self.preprocess_text(item["text"]).lower()
pos_keywords = {"amazing", "love", "best", "fantastic", "awesome", "superb", "great"}
neg_keywords = {"hate", "worst", "bad", "terrible", "awful", "disappointed", "horrible", "cringe"}
is_strong_pos = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in pos_keywords)
is_strong_neg = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in neg_keywords)
if is_strong_pos and not is_strong_neg:
results["neutral"] -= 1
results["positive"] += 1
item.update({
"label": "positive",
"confidence": min(0.95, item["confidence"] + 0.3),
"reanalyzed": True,
"reanalysis_reason": "strong_pos_keywords"
})
elif is_strong_neg and not is_strong_pos:
results["neutral"] -= 1
results["negative"] += 1
item.update({
"label": "negative",
"confidence": min(0.95, item["confidence"] + 0.3),
"reanalyzed": True,
"reanalysis_reason": "strong_neg_keywords"
})
def plot_sentiment_pie(results, title="Reels Sentiment Analysis"):
sizes = [results.get('positive', 0), results.get('neutral', 0), results.get('negative', 0)]
if sum(sizes) == 0:
return None
labels = ['Positive', 'Neutral', 'Negative']
colors = ['#4CAF50', '#FFC107', '#F44336']
explode = (0.05, 0, 0.05)
fig, ax = plt.subplots(figsize=(8, 6))
ax.pie(sizes, explode=explode, labels=labels, colors=colors,
autopct='%1.1f%%', shadow=True, startangle=140,
textprops={'fontsize': 12, 'color': 'black'})
ax.axis('equal')
plt.title(title, fontsize=16, pad=20)
plt.tight_layout()
return fig
def plot_category_distribution(counter, title="Reels Content Distribution"):
total = sum(counter.values())
if total == 0:
return None
threshold = total * 0.02
other_count = 0
labels = []
sizes = []
for category, count in counter.most_common():
if count >= threshold and category != "other":
labels.append(category.replace('_', ' ').title())
sizes.append(count)
else:
other_count += count
if other_count > 0:
labels.append("Other")
sizes.append(other_count)
if not sizes:
return None
fig, ax = plt.subplots(figsize=(10, 8))
colors = plt.cm.viridis(np.linspace(0, 1, len(sizes)))
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140, colors=colors,
wedgeprops={'edgecolor': 'white', 'linewidth': 1}, textprops={'fontsize': 11})
plt.title(title, pad=20, fontsize=15)
plt.axis('equal')
plt.tight_layout()
return fig
def preprocess_text_cat(text):
if not text:
return ""
text = re.sub(r"http\S+|@\w+|#\w+", "", text).lower()
return re.sub(r"\s+", " ", text).strip()
def classify_reel_content(text):
global content_classifier
processed = preprocess_text_cat(text)
if not processed or len(processed.split()) < 2:
return "other", {"reason": "short_text"}
for category, keywords in CATEGORY_KEYWORDS.items():
if any(re.search(rf"\b{re.escape(keyword)}\b", processed) for keyword in keywords):
return category, {"reason": "keyword_match"}
if content_classifier is None:
return "other", {"reason": "classifier_not_initialized"}
try:
result = content_classifier(processed[:256], CONTENT_CATEGORIES, multi_label=False)
top_label = result['labels'][0]
top_score = result['scores'][0]
return top_label if top_score > 0.5 else "other", {"reason": "model_prediction", "score": top_score}
except Exception as e:
print(f"Classification error: {e}")
return "other", {"reason": "classification_error"}
# Gradio Interface Functions
def login_gradio_auto():
global cl
try:
PASSWORD = "qwerty@desk" # Replace with your actual password
except Exception as e:
return f"Error accessing password: {e}", gr.update(visible=False)
if not PASSWORD:
return "Error: Instagram password not found.", gr.update(visible=False)
cl = Client()
try:
cl.login("jattman1993", PASSWORD)
return f"Successfully logged in as jattman1993", gr.update(visible=False)
except Exception as e:
cl = None
error_message = str(e)
if "Two factor challenged" in error_message or "challenge_required" in error_message:
return f"Login failed: Two-factor authentication required.", gr.update(visible=True)
return f"Error during login: {error_message}", gr.update(visible=False)
def submit_otp_gradio(otp_code):
global cl
if cl is None:
return "Error: Not logged in.", "", gr.update(visible=False)
try:
cl.two_factor_login(otp_code)
return f"OTP successful. Logged in as jattman1993.", "", gr.update(visible=False)
except Exception as e:
return f"OTP failed: {e}", "", gr.update(visible=True)
def fetch_reels_gradio():
global cl, explore_reels_list
if cl is None:
explore_reels_list = []
return "Error: Not logged in."
try:
explore_reels_list = cl.explore_reels()[:100]
return f"Fetched {len(explore_reels_list)} reels."
except Exception as e:
explore_reels_list = []
return f"Error fetching reels: {e}"
def analyze_reels_gradio(max_to_analyze):
global explore_reels_list, sentiment_analyzer, content_classifier
if not explore_reels_list:
return "Error: No reels fetched.", None, None
num_reels = min(max_to_analyze, len(explore_reels_list))
reels_to_analyze = explore_reels_list[:num_reels]
if sentiment_analyzer is None:
sentiment_analyzer = ReelSentimentAnalyzer()
if content_classifier is None:
content_classifier = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli",
device=0 if torch.cuda.is_available() else -1
)
status_messages = []
sentiment_plot = None
content_plot = None
# Sentiment Analysis
try:
sentiment_results, _ = sentiment_analyzer.analyze_reels(reels_to_analyze)
sentiment_plot = plot_sentiment_pie(sentiment_results)
status_messages.append("Sentiment analysis complete.")
except Exception as e:
status_messages.append(f"Sentiment error: {e}")
# Content Analysis
try:
category_counts = Counter()
for reel in reels_to_analyze:
caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
category, _ = classify_reel_content(caption)
category_counts[category] += 1
content_plot = plot_category_distribution(category_counts)
status_messages.append("Content analysis complete.")
except Exception as e:
status_messages.append(f"Content error: {e}")
return "\n".join(status_messages), sentiment_plot, content_plot
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Instagram Reels Analysis")
# Login Section
with gr.Row():
connect_btn = gr.Button("Connect Instagram")
login_status = gr.Label(label="Login Status")
# OTP Input (hidden initially)
with gr.Row(visible=False) as otp_row:
otp_input = gr.Textbox(label="Enter OTP Code")
otp_submit_btn = gr.Button("Submit OTP")
# Fetch Section
with gr.Row():
fetch_btn = gr.Button("Fetch Reels")
fetch_status = gr.Label(label="Fetch Status")
# Analysis Section
with gr.Row():
max_reels = gr.Slider(1, 100, value=10, step=1, label="Number of Reels to Analyze")
analyze_btn = gr.Button("Analyze Reels")
analyze_status = gr.Label(label="Analysis Status")
# Results Section
with gr.Row():
with gr.Column():
gr.Markdown("## Sentiment Analysis")
sentiment_output = gr.Plot(label="Sentiment Distribution")
with gr.Column():
gr.Markdown("## Content Analysis")
content_output = gr.Plot(label="Content Distribution")
# Event handlers
connect_btn.click(
login_gradio_auto,
inputs=None,
outputs=[login_status, otp_row]
)
otp_submit_btn.click(
submit_otp_gradio,
inputs=otp_input,
outputs=[login_status, otp_input, otp_row]
)
fetch_btn.click(
fetch_reels_gradio,
inputs=None,
outputs=fetch_status
)
analyze_btn.click(
analyze_reels_gradio,
inputs=max_reels,
outputs=[analyze_status, sentiment_output, content_output]
)
if __name__ == "__main__":
demo.launch()