File size: 39,982 Bytes
2b1482e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "H7ENjELwQyjR",
        "outputId": "95d2f8a3-9d3f-442f-8106-bd4c89521476"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Overwriting requirements.txt\n"
          ]
        }
      ],
      "source": [
        "%%writefile requirements.txt\n",
        "gradio\n",
        "tensorflow\n",
        "numpy\n",
        "pillow\n",
        "opencv-python-headless\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install gradio"
      ],
      "metadata": {
        "id": "fbc_INKXRIg-"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import files\n",
        "\n",
        "uploaded = files.upload()\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 73
        },
        "id": "EUidXLRmSQs9",
        "outputId": "bb6a5fac-a734-4aa8-8fac-75ebbe6dbbff"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "\n",
              "     <input type=\"file\" id=\"files-db89ec8f-2417-43fa-a522-3ace03ec68d3\" name=\"files[]\" multiple disabled\n",
              "        style=\"border:none\" />\n",
              "     <output id=\"result-db89ec8f-2417-43fa-a522-3ace03ec68d3\">\n",
              "      Upload widget is only available when the cell has been executed in the\n",
              "      current browser session. Please rerun this cell to enable.\n",
              "      </output>\n",
              "      <script>// Copyright 2017 Google LLC\n",
              "//\n",
              "// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
              "// you may not use this file except in compliance with the License.\n",
              "// You may obtain a copy of the License at\n",
              "//\n",
              "//      http://www.apache.org/licenses/LICENSE-2.0\n",
              "//\n",
              "// Unless required by applicable law or agreed to in writing, software\n",
              "// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
              "// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
              "// See the License for the specific language governing permissions and\n",
              "// limitations under the License.\n",
              "\n",
              "/**\n",
              " * @fileoverview Helpers for google.colab Python module.\n",
              " */\n",
              "(function(scope) {\n",
              "function span(text, styleAttributes = {}) {\n",
              "  const element = document.createElement('span');\n",
              "  element.textContent = text;\n",
              "  for (const key of Object.keys(styleAttributes)) {\n",
              "    element.style[key] = styleAttributes[key];\n",
              "  }\n",
              "  return element;\n",
              "}\n",
              "\n",
              "// Max number of bytes which will be uploaded at a time.\n",
              "const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
              "\n",
              "function _uploadFiles(inputId, outputId) {\n",
              "  const steps = uploadFilesStep(inputId, outputId);\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  // Cache steps on the outputElement to make it available for the next call\n",
              "  // to uploadFilesContinue from Python.\n",
              "  outputElement.steps = steps;\n",
              "\n",
              "  return _uploadFilesContinue(outputId);\n",
              "}\n",
              "\n",
              "// This is roughly an async generator (not supported in the browser yet),\n",
              "// where there are multiple asynchronous steps and the Python side is going\n",
              "// to poll for completion of each step.\n",
              "// This uses a Promise to block the python side on completion of each step,\n",
              "// then passes the result of the previous step as the input to the next step.\n",
              "function _uploadFilesContinue(outputId) {\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  const steps = outputElement.steps;\n",
              "\n",
              "  const next = steps.next(outputElement.lastPromiseValue);\n",
              "  return Promise.resolve(next.value.promise).then((value) => {\n",
              "    // Cache the last promise value to make it available to the next\n",
              "    // step of the generator.\n",
              "    outputElement.lastPromiseValue = value;\n",
              "    return next.value.response;\n",
              "  });\n",
              "}\n",
              "\n",
              "/**\n",
              " * Generator function which is called between each async step of the upload\n",
              " * process.\n",
              " * @param {string} inputId Element ID of the input file picker element.\n",
              " * @param {string} outputId Element ID of the output display.\n",
              " * @return {!Iterable<!Object>} Iterable of next steps.\n",
              " */\n",
              "function* uploadFilesStep(inputId, outputId) {\n",
              "  const inputElement = document.getElementById(inputId);\n",
              "  inputElement.disabled = false;\n",
              "\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  outputElement.innerHTML = '';\n",
              "\n",
              "  const pickedPromise = new Promise((resolve) => {\n",
              "    inputElement.addEventListener('change', (e) => {\n",
              "      resolve(e.target.files);\n",
              "    });\n",
              "  });\n",
              "\n",
              "  const cancel = document.createElement('button');\n",
              "  inputElement.parentElement.appendChild(cancel);\n",
              "  cancel.textContent = 'Cancel upload';\n",
              "  const cancelPromise = new Promise((resolve) => {\n",
              "    cancel.onclick = () => {\n",
              "      resolve(null);\n",
              "    };\n",
              "  });\n",
              "\n",
              "  // Wait for the user to pick the files.\n",
              "  const files = yield {\n",
              "    promise: Promise.race([pickedPromise, cancelPromise]),\n",
              "    response: {\n",
              "      action: 'starting',\n",
              "    }\n",
              "  };\n",
              "\n",
              "  cancel.remove();\n",
              "\n",
              "  // Disable the input element since further picks are not allowed.\n",
              "  inputElement.disabled = true;\n",
              "\n",
              "  if (!files) {\n",
              "    return {\n",
              "      response: {\n",
              "        action: 'complete',\n",
              "      }\n",
              "    };\n",
              "  }\n",
              "\n",
              "  for (const file of files) {\n",
              "    const li = document.createElement('li');\n",
              "    li.append(span(file.name, {fontWeight: 'bold'}));\n",
              "    li.append(span(\n",
              "        `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
              "        `last modified: ${\n",
              "            file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
              "                                    'n/a'} - `));\n",
              "    const percent = span('0% done');\n",
              "    li.appendChild(percent);\n",
              "\n",
              "    outputElement.appendChild(li);\n",
              "\n",
              "    const fileDataPromise = new Promise((resolve) => {\n",
              "      const reader = new FileReader();\n",
              "      reader.onload = (e) => {\n",
              "        resolve(e.target.result);\n",
              "      };\n",
              "      reader.readAsArrayBuffer(file);\n",
              "    });\n",
              "    // Wait for the data to be ready.\n",
              "    let fileData = yield {\n",
              "      promise: fileDataPromise,\n",
              "      response: {\n",
              "        action: 'continue',\n",
              "      }\n",
              "    };\n",
              "\n",
              "    // Use a chunked sending to avoid message size limits. See b/62115660.\n",
              "    let position = 0;\n",
              "    do {\n",
              "      const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
              "      const chunk = new Uint8Array(fileData, position, length);\n",
              "      position += length;\n",
              "\n",
              "      const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
              "      yield {\n",
              "        response: {\n",
              "          action: 'append',\n",
              "          file: file.name,\n",
              "          data: base64,\n",
              "        },\n",
              "      };\n",
              "\n",
              "      let percentDone = fileData.byteLength === 0 ?\n",
              "          100 :\n",
              "          Math.round((position / fileData.byteLength) * 100);\n",
              "      percent.textContent = `${percentDone}% done`;\n",
              "\n",
              "    } while (position < fileData.byteLength);\n",
              "  }\n",
              "\n",
              "  // All done.\n",
              "  yield {\n",
              "    response: {\n",
              "      action: 'complete',\n",
              "    }\n",
              "  };\n",
              "}\n",
              "\n",
              "scope.google = scope.google || {};\n",
              "scope.google.colab = scope.google.colab || {};\n",
              "scope.google.colab._files = {\n",
              "  _uploadFiles,\n",
              "  _uploadFilesContinue,\n",
              "};\n",
              "})(self);\n",
              "</script> "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Saving chest_xray_weights.h5 to chest_xray_weights.h5\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!ls"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "X7itk4Fdu1pA",
        "outputId": "a8772aa3-e115-4dfe-c97f-241b2ec8d148"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "chest_xray_weights.h5  requirements.txt  sample_data\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "%%writefile app.py\n",
        "import gradio as gr\n",
        "import tensorflow as tf\n",
        "from tensorflow.keras.models import load_model\n",
        "import numpy as np\n",
        "from PIL import Image\n",
        "import cv2\n",
        "from tensorflow.keras.initializers import GlorotUniform\n",
        "from tensorflow.keras.utils import custom_object_scope\n",
        "\n",
        "# Load your trained model (upload your .h5 file to this directory or specify the path)\n",
        "# Use a custom object scope to handle potential compatibility issues with GlorotUniform\n",
        "with custom_object_scope({'GlorotUniform': GlorotUniform}):\n",
        "    model = load_model('chest_xray_weights.h5')  # Replace with your actual filename\n",
        "\n",
        "\n",
        "# Define your model's classes (update based on your training labels)\n",
        "anatomy_classes = [\n",
        "    \"No Finding\",\n",
        "    \"Atelectasis\",\n",
        "    \"Cardiomegaly\",\n",
        "    \"Consolidation\",\n",
        "    \"Edema\",\n",
        "    \"Effusion\",\n",
        "    \"Emphysema\",\n",
        "    \"Fibrosis\",\n",
        "    \"Hernia\",\n",
        "    \"Infiltration\",\n",
        "    \"Mass\",\n",
        "    \"Nodule\",\n",
        "    \"Pneumonia\",\n",
        "    \"Pneumothorax\"\n",
        "]\n",
        "\n",
        "def predict_abnormality(image):\n",
        "    try:\n",
        "        # Preprocess the image (match your training setup)\n",
        "        img = Image.fromarray(image).resize((224, 224))  # Adjust size to your model's input\n",
        "        img_array = np.array(img)\n",
        "\n",
        "        # Convert to grayscale if your model expects it\n",
        "        if len(img_array.shape) == 3:\n",
        "            img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)\n",
        "\n",
        "        img_array = img_array / 255.0  # Normalize\n",
        "        img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension\n",
        "        img_array = np.expand_dims(img_array, axis=-1)  # Add channel if needed\n",
        "\n",
        "        # Run prediction\n",
        "        predictions = model.predict(img_array) # Removed [0] to inspect full output first\n",
        "        predicted_index = np.argmax(predictions[0]) # Access the first prediction output\n",
        "        confidence = predictions[0][predicted_index]\n",
        "\n",
        "        # Format output\n",
        "        if predicted_index == 0:  # Assuming index 0 is \"Normal\"\n",
        "            return f\"No abnormality detected. Confidence: {confidence:.2%}\"\n",
        "        else:\n",
        "            issue = anatomy_classes[predicted_index]\n",
        "            return f\"Detected issue: {issue}. Confidence: {confidence:.2%}. Please consult a doctor.\"\n",
        "\n",
        "    except Exception as e:\n",
        "        print(f\"Error details: {e}\") # Print error details\n",
        "        # Added print statements to help diagnose the error\n",
        "        try:\n",
        "            print(f\"Shape of predictions: {predictions.shape}\")\n",
        "            print(f\"Predictions: {predictions}\")\n",
        "            print(f\"Predicted index: {predicted_index}\")\n",
        "            print(f\"Number of anatomy classes: {len(anatomy_classes)}\")\n",
        "\n",
        "        except NameError:\n",
        "            print(\"Predictions or predicted_index not defined before error.\")\n",
        "\n",
        "        return f\"Error: {str(e)}. Try another image.\"\n",
        "\n",
        "# Create the Gradio interface\n",
        "demo = gr.Interface(\n",
        "    fn=predict_abnormality,\n",
        "    inputs=gr.Image(label=\"Upload Chest X-Ray Image\", type=\"numpy\"),\n",
        "    outputs=gr.Textbox(label=\"Analysis Result\"),\n",
        "    title=\"Chest X-Ray Abnormality Detector\",\n",
        "    description=\"Upload an X-ray image to detect potential issues. For educational use only—not a medical diagnosis.\",\n",
        "    examples=[[\"sample_xray.jpg\"]],  # Add paths to example images if available\n",
        "    allow_flagging=\"never\"\n",
        ")\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    demo.launch()\n"
      ],
      "metadata": {
        "id": "na8gwSs_5rPj"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import gradio as gr\n",
        "import tensorflow as tf\n",
        "from tensorflow.keras.models import load_model\n",
        "import numpy as np\n",
        "from PIL import Image\n",
        "import cv2\n",
        "from tensorflow.keras.initializers import GlorotUniform\n",
        "from tensorflow.keras.utils import custom_object_scope\n",
        "\n",
        "# Load your trained model (upload your .h5 file to this directory or specify the path)\n",
        "# Use a custom object scope to handle potential compatibility issues with GlorotUniform\n",
        "with custom_object_scope({'GlorotUniform': GlorotUniform}):\n",
        "    model = load_model('chest_xray_weights.h5')  # Replace with your actual filename\n",
        "\n",
        "\n",
        "# Define your model's classes (update based on your training labels)\n",
        "anatomy_classes = [\n",
        "    \"No Finding\",\n",
        "    \"Atelectasis\",\n",
        "    \"Cardiomegaly\",\n",
        "    \"Consolidation\",\n",
        "    \"Edema\",\n",
        "    \"Effusion\",\n",
        "    \"Emphysema\",\n",
        "    \"Fibrosis\",\n",
        "    \"Hernia\",\n",
        "    \"Infiltration\",\n",
        "    \"Mass\",\n",
        "    \"Nodule\",\n",
        "    \"Pneumonia\",\n",
        "    \"Pneumothorax\"\n",
        "]\n",
        "\n",
        "def predict_abnormality(image):\n",
        "    try:\n",
        "        # Preprocess the image (match your training setup)\n",
        "        img = Image.fromarray(image).resize((224, 224))  # Adjust size to your model's input\n",
        "        img_array = np.array(img)\n",
        "\n",
        "        # Convert to grayscale if your model expects it\n",
        "        if len(img_array.shape) == 3:\n",
        "            img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)\n",
        "\n",
        "        img_array = img_array / 255.0  # Normalize\n",
        "        img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension\n",
        "        img_array = np.expand_dims(img_array, axis=-1)  # Add channel if needed\n",
        "\n",
        "        # Run prediction\n",
        "        predictions = model.predict(img_array) # Removed [0] to inspect full output first\n",
        "        predicted_index = np.argmax(predictions[0]) # Access the first prediction output\n",
        "        confidence = predictions[0][predicted_index]\n",
        "\n",
        "        # Format output\n",
        "        if predicted_index == 0:  # Assuming index 0 is \"Normal\"\n",
        "            return f\"No abnormality detected. Confidence: {confidence:.2%}\"\n",
        "        else:\n",
        "            issue = anatomy_classes[predicted_index]\n",
        "            return f\"Detected issue: {issue}. Confidence: {confidence:.2%}. Please consult a doctor.\"\n",
        "\n",
        "    except Exception as e:\n",
        "        print(f\"Error details: {e}\") # Print error details\n",
        "        # Added print statements to help diagnose the error\n",
        "        try:\n",
        "            print(f\"Shape of predictions: {predictions.shape}\")\n",
        "            print(f\"Predictions: {predictions}\")\n",
        "            print(f\"Predicted index: {predicted_index}\")\n",
        "            print(f\"Number of anatomy classes: {len(anatomy_classes)}\")\n",
        "\n",
        "        except NameError:\n",
        "            print(\"Predictions or predicted_index not defined before error.\")\n",
        "\n",
        "        return f\"Error: {str(e)}. Try another image.\"\n",
        "\n",
        "# Create the Gradio interface\n",
        "demo = gr.Interface(\n",
        "    fn=predict_abnormality,\n",
        "    inputs=gr.Image(label=\"Upload Chest X-Ray Image\", type=\"numpy\"),\n",
        "    outputs=gr.Textbox(label=\"Analysis Result\"),\n",
        "    title=\"Chest X-Ray Abnormality Detector\",\n",
        "    description=\"Upload an X-ray image to detect potential issues. For educational use only—not a medical diagnosis.\",\n",
        "    examples=[[\"sample_xray.jpg\"]],  # Add paths to example images if available\n",
        "    allow_flagging=\"never\"\n",
        ")\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    demo.launch()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 685
        },
        "id": "ABo9ZTOIROmK",
        "outputId": "db3f3be7-9332-46b9-8de9-fa8d76d8c407"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "/usr/local/lib/python3.11/dist-packages/gradio/interface.py:416: UserWarning: The `allow_flagging` parameter in `Interface` is deprecated.Use `flagging_mode` instead.\n",
            "  warnings.warn(\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "It looks like you are running Gradio on a hosted a Jupyter notebook. For the Gradio app to work, sharing must be enabled. Automatically setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
            "\n",
            "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
            "* Running on public URL: https://0b58124b323893b4d0.gradio.live\n",
            "\n",
            "This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<div><iframe src=\"https://0b58124b323893b4d0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ]
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "metadata": {
        "id": "0mtpdQN3w9wr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "!gradio deploy"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Eo8HYkzt3vET",
        "outputId": "428c29ab-d2dc-4ecb-b4a3-6b96d4da4532"
      },
      "execution_count": null,
      "outputs": [
        {
          "metadata": {
            "tags": null
          },
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Creating new Spaces Repo in \u001b[32m'/content'\u001b[0m. Collecting metadata, press Enter to \n",
            "accept default value.\n",
            "Enter Spaces app title [content]: "
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install h5py tensorflow\n"
      ],
      "metadata": {
        "id": "GmlxHeAXTP-a"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Script: Upload and Handle .h5 File in Colab\n",
        "\n",
        "# Step 1: Import necessary libraries\n",
        "from google.colab import files\n",
        "from tensorflow.keras.models import load_model\n",
        "import h5py\n",
        "import os\n",
        "\n",
        "# Step 2: Upload the .h5 file\n",
        "print(\"Please upload your .h5 file:\")\n",
        "uploaded = files.upload()\n",
        "\n",
        "# Step 3: Get the uploaded filename (assumes single file upload)\n",
        "filename = list(uploaded.keys())[0]  # e.g., 'chest_xray_model.h5'\n",
        "print(f\"Uploaded file: {filename}\")\n",
        "\n",
        "# Step 4: Verify file existence and size\n",
        "if os.path.exists(filename):\n",
        "    file_size = os.path.getsize(filename) / (1024 * 1024)  # Size in MB\n",
        "    print(f\"File size: {file_size:.2f} MB\")\n",
        "else:\n",
        "    print(\"Upload failed. Please try again.\")\n",
        "    raise SystemExit\n",
        "\n",
        "# Step 5: Handle as HDF5 file (general inspection)\n",
        "with h5py.File(filename, 'r') as f:\n",
        "    print(\"HDF5 keys:\", list(f.keys()))\n",
        "\n",
        "# Step 6: Load as Keras model (if it's a model file)\n",
        "try:\n",
        "    model = load_model(filename)\n",
        "    print(\"Model loaded successfully!\")\n",
        "    model.summary()  # Print model architecture\n",
        "except Exception as e:\n",
        "    print(f\"Error loading as Keras model: {e}\")\n",
        "\n",
        "# Optional: Save or process further\n",
        "# model.save('processed_model.h5')  # Example: Resave if modified\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 56
        },
        "id": "__-Yt8VdTT8b",
        "outputId": "251ea0b2-627f-4e15-e4b7-9859ee027e25"
      },
      "execution_count": null,
      "outputs": [
        {
          "metadata": {
            "tags": null
          },
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Please upload your .h5 file:\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "\n",
              "     <input type=\"file\" id=\"files-58b75fb6-d2ef-4c0f-9173-8ba3c9d66e40\" name=\"files[]\" multiple disabled\n",
              "        style=\"border:none\" />\n",
              "     <output id=\"result-58b75fb6-d2ef-4c0f-9173-8ba3c9d66e40\">\n",
              "      Upload widget is only available when the cell has been executed in the\n",
              "      current browser session. Please rerun this cell to enable.\n",
              "      </output>\n",
              "      <script>// Copyright 2017 Google LLC\n",
              "//\n",
              "// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
              "// you may not use this file except in compliance with the License.\n",
              "// You may obtain a copy of the License at\n",
              "//\n",
              "//      http://www.apache.org/licenses/LICENSE-2.0\n",
              "//\n",
              "// Unless required by applicable law or agreed to in writing, software\n",
              "// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
              "// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
              "// See the License for the specific language governing permissions and\n",
              "// limitations under the License.\n",
              "\n",
              "/**\n",
              " * @fileoverview Helpers for google.colab Python module.\n",
              " */\n",
              "(function(scope) {\n",
              "function span(text, styleAttributes = {}) {\n",
              "  const element = document.createElement('span');\n",
              "  element.textContent = text;\n",
              "  for (const key of Object.keys(styleAttributes)) {\n",
              "    element.style[key] = styleAttributes[key];\n",
              "  }\n",
              "  return element;\n",
              "}\n",
              "\n",
              "// Max number of bytes which will be uploaded at a time.\n",
              "const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
              "\n",
              "function _uploadFiles(inputId, outputId) {\n",
              "  const steps = uploadFilesStep(inputId, outputId);\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  // Cache steps on the outputElement to make it available for the next call\n",
              "  // to uploadFilesContinue from Python.\n",
              "  outputElement.steps = steps;\n",
              "\n",
              "  return _uploadFilesContinue(outputId);\n",
              "}\n",
              "\n",
              "// This is roughly an async generator (not supported in the browser yet),\n",
              "// where there are multiple asynchronous steps and the Python side is going\n",
              "// to poll for completion of each step.\n",
              "// This uses a Promise to block the python side on completion of each step,\n",
              "// then passes the result of the previous step as the input to the next step.\n",
              "function _uploadFilesContinue(outputId) {\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  const steps = outputElement.steps;\n",
              "\n",
              "  const next = steps.next(outputElement.lastPromiseValue);\n",
              "  return Promise.resolve(next.value.promise).then((value) => {\n",
              "    // Cache the last promise value to make it available to the next\n",
              "    // step of the generator.\n",
              "    outputElement.lastPromiseValue = value;\n",
              "    return next.value.response;\n",
              "  });\n",
              "}\n",
              "\n",
              "/**\n",
              " * Generator function which is called between each async step of the upload\n",
              " * process.\n",
              " * @param {string} inputId Element ID of the input file picker element.\n",
              " * @param {string} outputId Element ID of the output display.\n",
              " * @return {!Iterable<!Object>} Iterable of next steps.\n",
              " */\n",
              "function* uploadFilesStep(inputId, outputId) {\n",
              "  const inputElement = document.getElementById(inputId);\n",
              "  inputElement.disabled = false;\n",
              "\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  outputElement.innerHTML = '';\n",
              "\n",
              "  const pickedPromise = new Promise((resolve) => {\n",
              "    inputElement.addEventListener('change', (e) => {\n",
              "      resolve(e.target.files);\n",
              "    });\n",
              "  });\n",
              "\n",
              "  const cancel = document.createElement('button');\n",
              "  inputElement.parentElement.appendChild(cancel);\n",
              "  cancel.textContent = 'Cancel upload';\n",
              "  const cancelPromise = new Promise((resolve) => {\n",
              "    cancel.onclick = () => {\n",
              "      resolve(null);\n",
              "    };\n",
              "  });\n",
              "\n",
              "  // Wait for the user to pick the files.\n",
              "  const files = yield {\n",
              "    promise: Promise.race([pickedPromise, cancelPromise]),\n",
              "    response: {\n",
              "      action: 'starting',\n",
              "    }\n",
              "  };\n",
              "\n",
              "  cancel.remove();\n",
              "\n",
              "  // Disable the input element since further picks are not allowed.\n",
              "  inputElement.disabled = true;\n",
              "\n",
              "  if (!files) {\n",
              "    return {\n",
              "      response: {\n",
              "        action: 'complete',\n",
              "      }\n",
              "    };\n",
              "  }\n",
              "\n",
              "  for (const file of files) {\n",
              "    const li = document.createElement('li');\n",
              "    li.append(span(file.name, {fontWeight: 'bold'}));\n",
              "    li.append(span(\n",
              "        `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
              "        `last modified: ${\n",
              "            file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
              "                                    'n/a'} - `));\n",
              "    const percent = span('0% done');\n",
              "    li.appendChild(percent);\n",
              "\n",
              "    outputElement.appendChild(li);\n",
              "\n",
              "    const fileDataPromise = new Promise((resolve) => {\n",
              "      const reader = new FileReader();\n",
              "      reader.onload = (e) => {\n",
              "        resolve(e.target.result);\n",
              "      };\n",
              "      reader.readAsArrayBuffer(file);\n",
              "    });\n",
              "    // Wait for the data to be ready.\n",
              "    let fileData = yield {\n",
              "      promise: fileDataPromise,\n",
              "      response: {\n",
              "        action: 'continue',\n",
              "      }\n",
              "    };\n",
              "\n",
              "    // Use a chunked sending to avoid message size limits. See b/62115660.\n",
              "    let position = 0;\n",
              "    do {\n",
              "      const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
              "      const chunk = new Uint8Array(fileData, position, length);\n",
              "      position += length;\n",
              "\n",
              "      const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
              "      yield {\n",
              "        response: {\n",
              "          action: 'append',\n",
              "          file: file.name,\n",
              "          data: base64,\n",
              "        },\n",
              "      };\n",
              "\n",
              "      let percentDone = fileData.byteLength === 0 ?\n",
              "          100 :\n",
              "          Math.round((position / fileData.byteLength) * 100);\n",
              "      percent.textContent = `${percentDone}% done`;\n",
              "\n",
              "    } while (position < fileData.byteLength);\n",
              "  }\n",
              "\n",
              "  // All done.\n",
              "  yield {\n",
              "    response: {\n",
              "      action: 'complete',\n",
              "    }\n",
              "  };\n",
              "}\n",
              "\n",
              "scope.google = scope.google || {};\n",
              "scope.google.colab = scope.google.colab || {};\n",
              "scope.google.colab._files = {\n",
              "  _uploadFiles,\n",
              "  _uploadFilesContinue,\n",
              "};\n",
              "})(self);\n",
              "</script> "
            ],
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "f6c9da65",
        "outputId": "4ffa4d8e-5717-4864-8791-427eb6c0d2cd"
      },
      "source": [
        "# Uninstall current TensorFlow version\n",
        "!pip uninstall tensorflow -y\n",
        "\n",
        "# Install TensorFlow 2.8\n",
        "!pip install tensorflow==2.8\n",
        "\n",
        "# After running this cell, restart the Colab runtime (Runtime -> Restart runtime)\n",
        "# Then, re-run the cell containing your model loading and Gradio interface code (cell ID ABo9ZTOIROmK)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Found existing installation: tensorflow 2.18.0\n",
            "Uninstalling tensorflow-2.18.0:\n",
            "  Successfully uninstalled tensorflow-2.18.0\n",
            "\u001b[31mERROR: Could not find a version that satisfies the requirement tensorflow==2.8 (from versions: 2.12.0rc0, 2.12.0rc1, 2.12.0, 2.12.1, 2.13.0rc0, 2.13.0rc1, 2.13.0rc2, 2.13.0, 2.13.1, 2.14.0rc0, 2.14.0rc1, 2.14.0, 2.14.1, 2.15.0rc0, 2.15.0rc1, 2.15.0, 2.15.0.post1, 2.15.1, 2.16.0rc0, 2.16.1, 2.16.2, 2.17.0rc0, 2.17.0rc1, 2.17.0, 2.17.1, 2.18.0rc0, 2.18.0rc1, 2.18.0rc2, 2.18.0, 2.18.1, 2.19.0rc0, 2.19.0)\u001b[0m\u001b[31m\n",
            "\u001b[0m\u001b[31mERROR: No matching distribution found for tensorflow==2.8\u001b[0m\u001b[31m\n",
            "\u001b[0m"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "model.summary()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "De7ShZSR0RBq",
        "outputId": "f9e2c149-3007-4851-b330-b886238fcc40"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Model: \"sequential\"\n",
            "_________________________________________________________________\n",
            " Layer (type)                Output Shape              Param #   \n",
            "=================================================================\n",
            " conv2d (Conv2D)             (None, 222, 222, 32)      320       \n",
            "                                                                 \n",
            " max_pooling2d (MaxPooling2D  (None, 111, 111, 32)     0         \n",
            " )                                                               \n",
            "                                                                 \n",
            " conv2d_1 (Conv2D)           (None, 109, 109, 64)      18496     \n",
            "                                                                 \n",
            " max_pooling2d_1 (MaxPooling  (None, 54, 54, 64)       0         \n",
            " 2D)                                                             \n",
            "                                                                 \n",
            " conv2d_2 (Conv2D)           (None, 52, 52, 128)       73856     \n",
            "                                                                 \n",
            " max_pooling2d_2 (MaxPooling  (None, 26, 26, 128)      0         \n",
            " 2D)                                                             \n",
            "                                                                 \n",
            " flatten (Flatten)           (None, 86528)             0         \n",
            "                                                                 \n",
            " dense (Dense)               (None, 128)               11075712  \n",
            "                                                                 \n",
            " dropout (Dropout)           (None, 128)               0         \n",
            "                                                                 \n",
            " dense_1 (Dense)             (None, 14)                1806      \n",
            "                                                                 \n",
            "=================================================================\n",
            "Total params: 11,170,190\n",
            "Trainable params: 11,170,190\n",
            "Non-trainable params: 0\n",
            "_________________________________________________________________\n"
          ]
        }
      ]
    }
  ]
}