Spaces:
Sleeping
Sleeping
File size: 1,753 Bytes
ee1b6ca 69722dc ee1b6ca d6eb02e ee1b6ca 69722dc d6eb02e 69722dc d6eb02e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
from transformers import pipeline
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
st.set_page_config(page_title="Sentiment Analysis App")
sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
st.title("Sentiment Analysis App")
user_input = st.text_area("Enter a message:", height=150)
if st.button("Analyze Sentiment π", key="analyze_button", help="Click to analyze sentiment"):
if user_input:
# Perform sentiment analysis
st.markdown("---")
with st.spinner('Analyzing...'):
results = sentiment_classifier(user_input)
sentiment_label = results[0]["label"]
sentiment_score = results[0]["score"]
st.success("Analysis Complete! π")
st.write("")
st.subheader("Sentiment Analysis Result")
st.write(f"**Sentiment:** {sentiment_label}")
st.write(f"**Confidence Score:** {sentiment_score:.2f}")
# Colorful styled button
if sentiment_label == "positive":
button_color = "#33cc33" # green color for positive sentiment
elif sentiment_label == "negative":
button_color = "#ff3333" # red color for negative sentiment
else:
button_color = "#3399ff" # blue color for neutral sentiment
st.markdown(
f'<a style="background-color:{button_color};color:white;text-decoration:none;padding:8px 12px;'
f"border-radius:5px;display:inline-block;margin-top:15px;"
f'font-weight:bold;" href="https://www.streamlit.io/">'
f'Share Analysis on Streamlit <span style="font-size:20px;">π</span></a>',
unsafe_allow_html=True,
)
|