# inference.py from pptx import Presentation import re from transformers import pipeline def extract_text_from_pptx(file_path): presentation = Presentation(file_path) text = [] for slide_number, slide in enumerate(presentation.slides, start=1): for shape in slide.shapes: if hasattr(shape, "text"): text.append(shape.text) return "\n".join(text) def main(): file_path = "path/to/your/powerpoint.pptx" # Specify the path to your PowerPoint file extracted_text = extract_text_from_pptx(file_path) cleaned_text = re.sub(r'\s+', ' ', extracted_text) print(cleaned_text) classifier = pipeline("text-classification", model="Ahmed235/roberta_classification") summarizer = pipeline("summarization", model="Falconsai/text_summarization") result = classifier(cleaned_text)[0] predicted_label = result['label'] predicted_probability = result['score'] print("Predicted Label:", predicted_label) print(f"Evaluate the topic according to {predicted_label} is: {predicted_probability}") print(summarizer(cleaned_text, max_length=80, min_length=30, do_sample=False)) if __name__ == "__main__": main()