Ahmedhassan54's picture
Upload app.py
78cdd85 verified
raw
history blame
5.18 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
import os
import pandas as pd
# Configuration
MODEL_REPO = "Ahmedhassan54/Image-Classification"
MODEL_FILE = "best_model.h5"
# Download model from Hugging Face Hub
def load_model_from_hf():
try:
print("Attempting to load model...")
if not os.path.exists(MODEL_FILE):
print("Model file not found locally. Downloading...")
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILE,
cache_dir="."
)
print(f"Model downloaded to: {model_path}")
os.system(f"cp {model_path} {MODEL_FILE}")
print("Model copied to working directory")
print("Loading model...")
model = tf.keras.models.load_model(MODEL_FILE)
print("Model loaded successfully!")
return model
except Exception as e:
print(f"Model loading failed: {str(e)}")
raise gr.Error(f"Model loading failed: {str(e)}")
# Load model when the app starts
try:
model = load_model_from_hf()
except:
model = None
print("Proceeding without model - for debugging purposes")
def classify_image(image):
try:
print("\nClassification started...")
# Debug: Check input type
print(f"Input type: {type(image)}")
# Convert image if needed
if isinstance(image, np.ndarray):
print("Converting numpy array to PIL Image")
image = Image.fromarray(image)
# Preprocess image
print("Preprocessing image...")
image = image.resize((150, 150))
image_array = np.array(image) / 255.0
image_array = np.expand_dims(image_array, axis=0)
# Make prediction
print("Making prediction...")
if model is None:
# For debugging when model fails to load
confidence = 0.75 # Mock value
print("Using mock prediction (model not loaded)")
else:
prediction = model.predict(image_array, verbose=0)
confidence = float(prediction[0][0])
print(f"Raw confidence: {confidence}")
# Format outputs
label_output = {
"Cat": 1 - confidence,
"Dog": confidence
}
# Create dataframe for bar plot
plot_data = pd.DataFrame({
'Class': ['Cat', 'Dog'],
'Confidence': [1 - confidence, confidence]
})
print("Classification successful!")
print(f"Results: {label_output}")
return label_output, plot_data
except Exception as e:
print(f"Error during classification: {str(e)}")
raise gr.Error(f"Classification error: {str(e)}")
# Custom CSS
css = """
.gradio-container {
background: linear-gradient(to right, #f5f7fa, #c3cfe2);
}
footer {
visibility: hidden
}
.animate-pulse {
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
"""
# Build the interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🐾 Cat vs Dog Classifier 🦮
Upload an image to classify whether it's a cat or dog
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="pil")
with gr.Row():
submit_btn = gr.Button("Classify", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column():
label_output = gr.Label(label="Predictions", num_top_classes=2)
confidence_bar = gr.BarPlot(
pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
x="Class",
y="Confidence",
y_lim=[0,1],
title="Confidence Scores",
width=400,
height=300,
container=False
)
# Example images
gr.Examples(
examples=[
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
],
inputs=image_input,
outputs=[label_output, confidence_bar],
fn=classify_image,
cache_examples=True,
label="Try these examples:"
)
# Button actions
submit_btn.click(
fn=classify_image,
inputs=image_input,
outputs=[label_output, confidence_bar],
api_name="classify"
)
clear_btn.click(
fn=lambda: [None, None, None],
inputs=None,
outputs=[image_input, label_output, confidence_bar],
show_progress=False
)
# For debugging in Hugging Face Spaces
if __name__ == "__main__":
demo.launch(debug=True)