|
import gradio as gr |
|
import tensorflow as tf |
|
import numpy as np |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
import os |
|
import pandas as pd |
|
import logging |
|
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_REPO = "Ahmedhassan54/Image-Classification-Model" |
|
MODEL_FILE = "best_model.keras" |
|
|
|
|
|
model = None |
|
|
|
def load_model(): |
|
global model |
|
try: |
|
logger.info("Downloading model...") |
|
model_path = hf_hub_download( |
|
repo_id=MODEL_REPO, |
|
filename=MODEL_FILE, |
|
cache_dir=".", |
|
force_download=True |
|
) |
|
logger.info(f"Model path: {model_path}") |
|
|
|
|
|
with tf.device('/CPU:0'): |
|
model = tf.keras.models.load_model(model_path) |
|
logger.info("Model loaded successfully!") |
|
except Exception as e: |
|
logger.error(f"Model loading failed: {str(e)}") |
|
model = None |
|
|
|
|
|
load_model() |
|
|
|
def classify_image(image): |
|
try: |
|
if image is None: |
|
return {"Cat": 0.5, "Dog": 0.5}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}) |
|
|
|
|
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image.astype('uint8')) |
|
|
|
|
|
image = image.resize((150, 150)) |
|
img_array = np.array(image) / 255.0 |
|
if len(img_array.shape) == 3: |
|
img_array = np.expand_dims(img_array, axis=0) |
|
|
|
|
|
if model is not None: |
|
with tf.device('/CPU:0'): |
|
pred = model.predict(img_array, verbose=0) |
|
confidence = float(pred[0][0]) |
|
else: |
|
confidence = 0.75 |
|
|
|
results = { |
|
"Cat": round(1 - confidence, 4), |
|
"Dog": round(confidence, 4) |
|
} |
|
|
|
plot_data = pd.DataFrame({ |
|
'Class': ['Cat', 'Dog'], |
|
'Confidence': [1 - confidence, confidence] |
|
}) |
|
|
|
return results, plot_data |
|
|
|
except Exception as e: |
|
logger.error(f"Error: {str(e)}") |
|
return {"Error": str(e)}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🐾 Cat vs Dog Classifier 🦮") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
img_input = gr.Image(type="pil") |
|
classify_btn = gr.Button("Classify", variant="primary") |
|
|
|
with gr.Column(): |
|
label_out = gr.Label(num_top_classes=2) |
|
plot_out = gr.BarPlot( |
|
pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}), |
|
x="Class", y="Confidence", y_lim=[0,1] |
|
) |
|
|
|
classify_btn.click( |
|
classify_image, |
|
inputs=img_input, |
|
outputs=[label_out, plot_out] |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"], |
|
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"] |
|
], |
|
inputs=img_input, |
|
outputs=[label_out, plot_out], |
|
fn=classify_image, |
|
cache_examples=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |