Upload app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,11 @@ from PIL import Image
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import os
|
7 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Configuration
|
10 |
MODEL_REPO = "Ahmedhassan54/Image-Classification"
|
@@ -13,67 +18,77 @@ MODEL_FILE = "best_model.h5"
|
|
13 |
# Download model from Hugging Face Hub
|
14 |
def load_model_from_hf():
|
15 |
try:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
print("Model copied to working directory")
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
return model
|
|
|
32 |
except Exception as e:
|
33 |
-
|
34 |
-
raise gr.Error(f"Model loading failed: {str(e)}")
|
35 |
|
36 |
# Load model when the app starts
|
37 |
try:
|
38 |
model = load_model_from_hf()
|
39 |
-
except:
|
40 |
model = None
|
41 |
-
|
42 |
|
43 |
def classify_image(image):
|
44 |
try:
|
45 |
-
|
46 |
|
47 |
# Debug: Check input type
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
# Convert image if needed
|
51 |
if isinstance(image, np.ndarray):
|
52 |
-
|
53 |
image = Image.fromarray(image)
|
|
|
|
|
54 |
|
55 |
# Preprocess image
|
56 |
-
|
57 |
image = image.resize((150, 150))
|
58 |
image_array = np.array(image) / 255.0
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Make prediction
|
62 |
-
|
63 |
if model is None:
|
64 |
-
|
65 |
-
confidence = 0.75 # Mock value
|
66 |
-
print("Using mock prediction (model not loaded)")
|
67 |
-
else:
|
68 |
-
prediction = model.predict(image_array, verbose=0)
|
69 |
-
confidence = float(prediction[0][0])
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Format outputs
|
74 |
label_output = {
|
75 |
-
"Cat": 1 - confidence,
|
76 |
-
"Dog": confidence
|
77 |
}
|
78 |
|
79 |
# Create dataframe for bar plot
|
@@ -82,14 +97,14 @@ def classify_image(image):
|
|
82 |
'Confidence': [1 - confidence, confidence]
|
83 |
})
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
88 |
return label_output, plot_data
|
89 |
|
90 |
except Exception as e:
|
91 |
-
|
92 |
-
raise gr.Error(f"Classification
|
93 |
|
94 |
# Custom CSS
|
95 |
css = """
|
@@ -99,13 +114,9 @@ css = """
|
|
99 |
footer {
|
100 |
visibility: hidden
|
101 |
}
|
102 |
-
.
|
103 |
-
|
104 |
-
|
105 |
-
@keyframes pulse {
|
106 |
-
0% { opacity: 1; }
|
107 |
-
50% { opacity: 0.5; }
|
108 |
-
100% { opacity: 1; }
|
109 |
}
|
110 |
"""
|
111 |
|
@@ -158,12 +169,12 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
158 |
)
|
159 |
|
160 |
clear_btn.click(
|
161 |
-
fn=lambda: [None,
|
162 |
inputs=None,
|
163 |
-
outputs=[image_input,
|
164 |
show_progress=False
|
165 |
)
|
166 |
|
167 |
-
#
|
168 |
if __name__ == "__main__":
|
169 |
demo.launch(debug=True)
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import os
|
7 |
import pandas as pd
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Setup logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
|
14 |
# Configuration
|
15 |
MODEL_REPO = "Ahmedhassan54/Image-Classification"
|
|
|
18 |
# Download model from Hugging Face Hub
|
19 |
def load_model_from_hf():
|
20 |
try:
|
21 |
+
logger.info("Attempting to load model...")
|
22 |
+
|
23 |
+
# Check if model exists in cache
|
24 |
+
model_path = hf_hub_download(
|
25 |
+
repo_id=MODEL_REPO,
|
26 |
+
filename=MODEL_FILE,
|
27 |
+
cache_dir=".",
|
28 |
+
force_download=True # Ensure fresh download
|
29 |
+
)
|
30 |
+
logger.info(f"Model downloaded to: {model_path}")
|
|
|
31 |
|
32 |
+
# Load model
|
33 |
+
logger.info("Loading model...")
|
34 |
+
model = tf.keras.models.load_model(model_path)
|
35 |
+
logger.info("Model loaded successfully!")
|
36 |
return model
|
37 |
+
|
38 |
except Exception as e:
|
39 |
+
logger.error(f"Model loading failed: {str(e)}")
|
40 |
+
raise gr.Error(f"⚠️ Model loading failed: {str(e)}. Check the logs for details.")
|
41 |
|
42 |
# Load model when the app starts
|
43 |
try:
|
44 |
model = load_model_from_hf()
|
45 |
+
except Exception as e:
|
46 |
model = None
|
47 |
+
logger.error(f"Proceeding without model due to: {str(e)}")
|
48 |
|
49 |
def classify_image(image):
|
50 |
try:
|
51 |
+
logger.info("\nClassification started...")
|
52 |
|
53 |
# Debug: Check input type
|
54 |
+
logger.info(f"Input type: {type(image)}")
|
55 |
+
|
56 |
+
if image is None:
|
57 |
+
raise ValueError("No image provided")
|
58 |
|
59 |
# Convert image if needed
|
60 |
if isinstance(image, np.ndarray):
|
61 |
+
logger.info("Converting numpy array to PIL Image")
|
62 |
image = Image.fromarray(image)
|
63 |
+
elif not isinstance(image, Image.Image):
|
64 |
+
raise ValueError(f"Unexpected image type: {type(image)}")
|
65 |
|
66 |
# Preprocess image
|
67 |
+
logger.info("Preprocessing image...")
|
68 |
image = image.resize((150, 150))
|
69 |
image_array = np.array(image) / 255.0
|
70 |
+
|
71 |
+
# Add batch dimension
|
72 |
+
if len(image_array.shape) == 3:
|
73 |
+
image_array = np.expand_dims(image_array, axis=0)
|
74 |
+
|
75 |
+
logger.info(f"Image array shape: {image_array.shape}")
|
76 |
|
77 |
# Make prediction
|
78 |
+
logger.info("Making prediction...")
|
79 |
if model is None:
|
80 |
+
raise gr.Error("Model failed to load. Cannot make predictions.")
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
prediction = model.predict(image_array, verbose=0)
|
83 |
+
logger.info(f"Raw prediction: {prediction}")
|
84 |
+
|
85 |
+
confidence = float(prediction[0][0])
|
86 |
+
logger.info(f"Confidence score: {confidence}")
|
87 |
|
88 |
# Format outputs
|
89 |
label_output = {
|
90 |
+
"Cat": round(1 - confidence, 4),
|
91 |
+
"Dog": round(confidence, 4)
|
92 |
}
|
93 |
|
94 |
# Create dataframe for bar plot
|
|
|
97 |
'Confidence': [1 - confidence, confidence]
|
98 |
})
|
99 |
|
100 |
+
logger.info("Classification successful!")
|
101 |
+
logger.info(f"Results: {label_output}")
|
102 |
|
103 |
return label_output, plot_data
|
104 |
|
105 |
except Exception as e:
|
106 |
+
logger.error(f"Error during classification: {str(e)}", exc_info=True)
|
107 |
+
raise gr.Error(f"🔴 Classification failed: {str(e)}")
|
108 |
|
109 |
# Custom CSS
|
110 |
css = """
|
|
|
114 |
footer {
|
115 |
visibility: hidden
|
116 |
}
|
117 |
+
.error-message {
|
118 |
+
color: red !important;
|
119 |
+
font-weight: bold !important;
|
|
|
|
|
|
|
|
|
120 |
}
|
121 |
"""
|
122 |
|
|
|
169 |
)
|
170 |
|
171 |
clear_btn.click(
|
172 |
+
fn=lambda: [None, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})],
|
173 |
inputs=None,
|
174 |
+
outputs=[image_input, confidence_bar],
|
175 |
show_progress=False
|
176 |
)
|
177 |
|
178 |
+
# Launch the app
|
179 |
if __name__ == "__main__":
|
180 |
demo.launch(debug=True)
|