Upload 4 files
Browse files
README.md
CHANGED
@@ -1,12 +1,38 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Cat vs Dog Classifier
|
3 |
+
emoji: 🐱🐶
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.21.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
# Cat vs Dog Image Classifier
|
14 |
+
|
15 |
+
A deep learning model that classifies images of cats and dogs with TensorFlow/Keras.
|
16 |
+
|
17 |
+
 <!-- Replace with actual demo GIF -->
|
18 |
+
|
19 |
+
## 🚀 Try it out!
|
20 |
+
|
21 |
+
[](https://huggingface.co/spaces/Ahmedhassan54/Image-Classification)
|
22 |
+
|
23 |
+
## 🛠️ Technical Details
|
24 |
+
|
25 |
+
### Model Architecture
|
26 |
+
```python
|
27 |
+
Sequential([
|
28 |
+
Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
|
29 |
+
MaxPooling2D((2,2)),
|
30 |
+
Conv2D(64, (3,3), activation='relu'),
|
31 |
+
MaxPooling2D((2,2)),
|
32 |
+
Conv2D(128, (3,3), activation='relu'),
|
33 |
+
MaxPooling2D((2,2)),
|
34 |
+
Flatten(),
|
35 |
+
Dense(512, activation='relu'),
|
36 |
+
Dropout(0.5),
|
37 |
+
Dense(1, activation='sigmoid')
|
38 |
+
])
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Configuration
|
10 |
+
MODEL_REPO = "Ahmedhassan54/Image-Classification" # Replace with your HF username and repo
|
11 |
+
MODEL_FILE = "best_model.h5"
|
12 |
+
|
13 |
+
# Download model from Hugging Face Hub
|
14 |
+
def load_model_from_hf():
|
15 |
+
try:
|
16 |
+
# Check if model exists locally first
|
17 |
+
if not os.path.exists(MODEL_FILE):
|
18 |
+
print("Downloading model from Hugging Face Hub...")
|
19 |
+
model_path = hf_hub_download(
|
20 |
+
repo_id=MODEL_REPO,
|
21 |
+
filename=MODEL_FILE,
|
22 |
+
cache_dir="."
|
23 |
+
)
|
24 |
+
# Copy to current directory for easier access
|
25 |
+
os.system(f"cp {model_path} {MODEL_FILE}")
|
26 |
+
|
27 |
+
# Load the model
|
28 |
+
model = tf.keras.models.load_model(MODEL_FILE)
|
29 |
+
print("Model loaded successfully!")
|
30 |
+
return model
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error loading model: {str(e)}")
|
33 |
+
raise
|
34 |
+
|
35 |
+
# Load the model when the app starts
|
36 |
+
model = load_model_from_hf()
|
37 |
+
|
38 |
+
# Image classification function
|
39 |
+
def classify_image(image):
|
40 |
+
try:
|
41 |
+
# Preprocess the image
|
42 |
+
image = image.resize((150, 150)) # Match model's expected input size
|
43 |
+
image_array = np.array(image) / 255.0 # Normalize
|
44 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
45 |
+
|
46 |
+
# Make prediction
|
47 |
+
prediction = model.predict(image_array)
|
48 |
+
confidence = float(prediction[0][0])
|
49 |
+
|
50 |
+
# Format results
|
51 |
+
if confidence > 0.5:
|
52 |
+
return {
|
53 |
+
"Dog": confidence * 100,
|
54 |
+
"Cat": (1 - confidence) * 100
|
55 |
+
}
|
56 |
+
else:
|
57 |
+
return {
|
58 |
+
"Cat": (1 - confidence) * 100,
|
59 |
+
"Dog": confidence * 100
|
60 |
+
}
|
61 |
+
except Exception as e:
|
62 |
+
return f"Error processing image: {str(e)}"
|
63 |
+
|
64 |
+
# Gradio interface
|
65 |
+
demo = gr.Interface(
|
66 |
+
fn=classify_image,
|
67 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
68 |
+
outputs=gr.Label(num_top_classes=2, label="Predictions"),
|
69 |
+
title="🐱 Cat vs Dog Classifier 🐶",
|
70 |
+
description="Upload an image to classify whether it's a cat or dog",
|
71 |
+
examples=[
|
72 |
+
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
|
73 |
+
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
|
74 |
+
],
|
75 |
+
allow_flagging="never"
|
76 |
+
)
|
77 |
+
|
78 |
+
# Launch the app
|
79 |
+
if __name__ == "__main__":
|
80 |
+
demo.launch(debug=True, server_port=7860)
|
model.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Image Classification for Cat vs Dog Dataset (Fixed Version)
|
2 |
+
# Run in Google Colab with GPU
|
3 |
+
|
4 |
+
## 1. Setup Environment
|
5 |
+
!nvidia-smi
|
6 |
+
!pip install tensorboard-plugin-profile
|
7 |
+
|
8 |
+
## 2. Import Libraries
|
9 |
+
import tensorflow as tf
|
10 |
+
from tensorflow.keras import layers, models, callbacks
|
11 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import datetime
|
15 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
16 |
+
import seaborn as sns
|
17 |
+
import os
|
18 |
+
import zipfile
|
19 |
+
from google.colab import files
|
20 |
+
from shutil import move
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
print("TensorFlow version:", tf.__version__)
|
24 |
+
|
25 |
+
## 3. Upload and Reorganize Your Dataset
|
26 |
+
# Upload your zip file
|
27 |
+
uploaded = files.upload()
|
28 |
+
zip_filename = list(uploaded.keys())[0]
|
29 |
+
|
30 |
+
# Extract the zip file
|
31 |
+
with zipfile.ZipFile(zip_filename, 'r') as zip_ref:
|
32 |
+
zip_ref.extractall('extracted_dataset')
|
33 |
+
|
34 |
+
# Verify extraction
|
35 |
+
!ls extracted_dataset
|
36 |
+
|
37 |
+
# Your dataset has images directly in custom_dataset/train/ (not in cat/dog subfolders)
|
38 |
+
# We need to reorganize them into proper class folders
|
39 |
+
def organize_dataset(input_dir, output_dir):
|
40 |
+
# Create class directories
|
41 |
+
os.makedirs(os.path.join(output_dir, 'cat'), exist_ok=True)
|
42 |
+
os.makedirs(os.path.join(output_dir, 'dog'), exist_ok=True)
|
43 |
+
|
44 |
+
# Move cat images
|
45 |
+
for file in Path(input_dir).glob('cat.*.jpg'):
|
46 |
+
move(str(file), os.path.join(output_dir, 'cat', file.name))
|
47 |
+
|
48 |
+
# Move dog images
|
49 |
+
for file in Path(input_dir).glob('dog.*.jpg'):
|
50 |
+
move(str(file), os.path.join(output_dir, 'dog', file.name))
|
51 |
+
|
52 |
+
# Reorganize the dataset
|
53 |
+
input_path = 'extracted_dataset/custom_dataset/train'
|
54 |
+
output_path = 'organized_dataset/train'
|
55 |
+
organize_dataset(input_path, output_path)
|
56 |
+
|
57 |
+
# Verify the new structure
|
58 |
+
!ls organized_dataset/train
|
59 |
+
!ls organized_dataset/train/cat | head -5
|
60 |
+
!ls organized_dataset/train/dog | head -5
|
61 |
+
|
62 |
+
## 4. Create Data Generators
|
63 |
+
# Parameters
|
64 |
+
IMG_SIZE = (150, 150)
|
65 |
+
BATCH_SIZE = 32
|
66 |
+
|
67 |
+
# Data generators with augmentation
|
68 |
+
train_datagen = ImageDataGenerator(
|
69 |
+
rescale=1./255,
|
70 |
+
rotation_range=20,
|
71 |
+
width_shift_range=0.2,
|
72 |
+
height_shift_range=0.2,
|
73 |
+
shear_range=0.2,
|
74 |
+
zoom_range=0.2,
|
75 |
+
horizontal_flip=True,
|
76 |
+
validation_split=0.2 # 20% for validation
|
77 |
+
)
|
78 |
+
|
79 |
+
# Training generator
|
80 |
+
train_generator = train_datagen.flow_from_directory(
|
81 |
+
'organized_dataset/train',
|
82 |
+
target_size=IMG_SIZE,
|
83 |
+
batch_size=BATCH_SIZE,
|
84 |
+
class_mode='binary',
|
85 |
+
subset='training',
|
86 |
+
shuffle=True
|
87 |
+
)
|
88 |
+
|
89 |
+
# Validation generator
|
90 |
+
validation_generator = train_datagen.flow_from_directory(
|
91 |
+
'organized_dataset/train',
|
92 |
+
target_size=IMG_SIZE,
|
93 |
+
batch_size=BATCH_SIZE,
|
94 |
+
class_mode='binary',
|
95 |
+
subset='validation',
|
96 |
+
shuffle=True
|
97 |
+
)
|
98 |
+
|
99 |
+
# Get class names
|
100 |
+
class_names = list(train_generator.class_indices.keys())
|
101 |
+
print("\nDetected classes:", class_names)
|
102 |
+
print("Number of training samples:", train_generator.samples)
|
103 |
+
print("Number of validation samples:", validation_generator.samples)
|
104 |
+
|
105 |
+
# Visualize samples
|
106 |
+
plt.figure(figsize=(12, 9))
|
107 |
+
for i in range(9):
|
108 |
+
img, label = next(train_generator)
|
109 |
+
plt.subplot(3, 3, i+1)
|
110 |
+
plt.imshow(img[i])
|
111 |
+
plt.title(class_names[int(label[i])])
|
112 |
+
plt.axis('off')
|
113 |
+
plt.suptitle("Sample Training Images")
|
114 |
+
plt.show()
|
115 |
+
|
116 |
+
## 5. Build Model
|
117 |
+
def build_model(input_shape):
|
118 |
+
model = models.Sequential([
|
119 |
+
layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape),
|
120 |
+
layers.MaxPooling2D((2,2)),
|
121 |
+
|
122 |
+
layers.Conv2D(64, (3,3), activation='relu'),
|
123 |
+
layers.MaxPooling2D((2,2)),
|
124 |
+
|
125 |
+
layers.Conv2D(128, (3,3), activation='relu'),
|
126 |
+
layers.MaxPooling2D((2,2)),
|
127 |
+
|
128 |
+
layers.Flatten(),
|
129 |
+
layers.Dense(512, activation='relu'),
|
130 |
+
layers.Dropout(0.5),
|
131 |
+
layers.Dense(1, activation='sigmoid') # Binary output
|
132 |
+
])
|
133 |
+
|
134 |
+
model.compile(
|
135 |
+
optimizer='adam',
|
136 |
+
loss='binary_crossentropy',
|
137 |
+
metrics=['accuracy']
|
138 |
+
)
|
139 |
+
return model
|
140 |
+
|
141 |
+
model = build_model(input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
|
142 |
+
model.summary()
|
143 |
+
|
144 |
+
## 6. Train Model
|
145 |
+
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
146 |
+
|
147 |
+
callbacks = [
|
148 |
+
callbacks.EarlyStopping(patience=5, restore_best_weights=True),
|
149 |
+
callbacks.ModelCheckpoint('best_model.h5', save_best_only=True),
|
150 |
+
callbacks.TensorBoard(log_dir=log_dir),
|
151 |
+
callbacks.ReduceLROnPlateau(factor=0.1, patience=3)
|
152 |
+
]
|
153 |
+
|
154 |
+
history = model.fit(
|
155 |
+
train_generator,
|
156 |
+
steps_per_epoch=train_generator.samples // BATCH_SIZE,
|
157 |
+
epochs=30,
|
158 |
+
validation_data=validation_generator,
|
159 |
+
validation_steps=validation_generator.samples // BATCH_SIZE,
|
160 |
+
callbacks=callbacks
|
161 |
+
)
|
162 |
+
|
163 |
+
## 7. Evaluate Model
|
164 |
+
# Plot training history
|
165 |
+
plt.figure(figsize=(12, 4))
|
166 |
+
plt.subplot(1, 2, 1)
|
167 |
+
plt.plot(history.history['accuracy'], label='Train')
|
168 |
+
plt.plot(history.history['val_accuracy'], label='Validation')
|
169 |
+
plt.title('Accuracy')
|
170 |
+
plt.legend()
|
171 |
+
|
172 |
+
plt.subplot(1, 2, 2)
|
173 |
+
plt.plot(history.history['loss'], label='Train')
|
174 |
+
plt.plot(history.history['val_loss'], label='Validation')
|
175 |
+
plt.title('Loss')
|
176 |
+
plt.legend()
|
177 |
+
plt.show()
|
178 |
+
|
179 |
+
## 8. Save Model
|
180 |
+
model.save('cat_dog_classifier.h5')
|
181 |
+
|
182 |
+
# Convert to TFLite
|
183 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
184 |
+
tflite_model = converter.convert()
|
185 |
+
with open('cat_dog.tflite', 'wb') as f:
|
186 |
+
f.write(tflite_model)
|
187 |
+
|
188 |
+
print("\nModel saved in HDF5 and TFLite formats")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
gradio
|
3 |
+
pillow
|
4 |
+
numpy
|
5 |
+
huggingface-hub
|