import gradio as gr import tensorflow as tf import numpy as np from PIL import Image from huggingface_hub import hf_hub_download import os import pandas as pd import logging # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Configuration MODEL_REPO = "Ahmedhassan54/Image-Classification" MODEL_FILE = "best_model.h5" # Download model from Hugging Face Hub def load_model_from_hf(): try: logger.info("Attempting to load model...") # Check if model exists in cache model_path = hf_hub_download( repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".", force_download=True # Ensure fresh download ) logger.info(f"Model downloaded to: {model_path}") # Load model logger.info("Loading model...") model = tf.keras.models.load_model(model_path) logger.info("Model loaded successfully!") return model except Exception as e: logger.error(f"Model loading failed: {str(e)}") raise gr.Error(f"⚠️ Model loading failed: {str(e)}. Check the logs for details.") # Load model when the app starts try: model = load_model_from_hf() except Exception as e: model = None logger.error(f"Proceeding without model due to: {str(e)}") def classify_image(image): try: logger.info("\nClassification started...") # Debug: Check input type logger.info(f"Input type: {type(image)}") if image is None: raise ValueError("No image provided") # Convert image if needed if isinstance(image, np.ndarray): logger.info("Converting numpy array to PIL Image") image = Image.fromarray(image) elif not isinstance(image, Image.Image): raise ValueError(f"Unexpected image type: {type(image)}") # Preprocess image logger.info("Preprocessing image...") image = image.resize((150, 150)) image_array = np.array(image) / 255.0 # Add batch dimension if len(image_array.shape) == 3: image_array = np.expand_dims(image_array, axis=0) logger.info(f"Image array shape: {image_array.shape}") # Make prediction logger.info("Making prediction...") if model is None: raise gr.Error("Model failed to load. Cannot make predictions.") prediction = model.predict(image_array, verbose=0) logger.info(f"Raw prediction: {prediction}") confidence = float(prediction[0][0]) logger.info(f"Confidence score: {confidence}") # Format outputs label_output = { "Cat": round(1 - confidence, 4), "Dog": round(confidence, 4) } # Create dataframe for bar plot plot_data = pd.DataFrame({ 'Class': ['Cat', 'Dog'], 'Confidence': [1 - confidence, confidence] }) logger.info("Classification successful!") logger.info(f"Results: {label_output}") return label_output, plot_data except Exception as e: logger.error(f"Error during classification: {str(e)}", exc_info=True) raise gr.Error(f"🔴 Classification failed: {str(e)}") # Custom CSS css = """ .gradio-container { background: linear-gradient(to right, #f5f7fa, #c3cfe2); } footer { visibility: hidden } .error-message { color: red !important; font-weight: bold !important; } """ # Build the interface with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🐾 Cat vs Dog Classifier 🦮 Upload an image to classify whether it's a cat or dog """) with gr.Row(): with gr.Column(): image_input = gr.Image(label="Upload Image", type="pil") with gr.Row(): submit_btn = gr.Button("Classify", variant="primary") clear_btn = gr.Button("Clear") with gr.Column(): label_output = gr.Label(label="Predictions", num_top_classes=2) confidence_bar = gr.BarPlot( pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}), x="Class", y="Confidence", y_lim=[0,1], title="Confidence Scores", width=400, height=300, container=False ) # Example images gr.Examples( examples=[ ["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"], ["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"] ], inputs=image_input, outputs=[label_output, confidence_bar], fn=classify_image, cache_examples=True, label="Try these examples:" ) # Button actions submit_btn.click( fn=classify_image, inputs=image_input, outputs=[label_output, confidence_bar], api_name="classify" ) clear_btn.click( fn=lambda: [None, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})], inputs=None, outputs=[image_input, confidence_bar], show_progress=False ) # Launch the app if __name__ == "__main__": demo.launch(debug=True)