File size: 5,487 Bytes
a43dae1
 
 
 
 
 
 
ea69cd5
 
 
 
 
a43dae1
 
ea69cd5
 
a43dae1
 
74a0fdb
a43dae1
 
 
 
 
 
 
 
 
 
 
ea69cd5
a43dae1
 
ea69cd5
 
 
 
a43dae1
ea69cd5
a43dae1
ea69cd5
 
 
a43dae1
ea69cd5
 
 
 
 
 
 
 
 
 
 
a43dae1
ea69cd5
 
 
a43dae1
 
 
ea69cd5
a43dae1
ea69cd5
 
 
74a0fdb
ea69cd5
a43dae1
74a0fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# =============================================================================
# DON'T STEAL THE FREE CODE OF DEVS! Use it for free an do not touch credits!
# If you steal this code, in the future you will pay for apps like this!
# A bit of respect goes a long way – all rights reserved under German law.
# Copyright Volkan Kücükbudak https://github.com/volkansah
# Repo URL: https://github.com/AiCodeCraft
# =============================================================================
import streamlit as st
import os
import json
import datetime
import openai
from datetime import timedelta
import logging
from datasets import load_dataset, Dataset, concatenate_datasets

# ------------------ Logging konfigurieren ------------------
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
logger.info("Starte App mit HF-Dataset Memory...")

# ------------------ Hugging Face Token laden ------------------
HF_TOKEN_MEMORY = os.getenv('HF_TOKEN_MEMORY', '').strip()
if HF_TOKEN_MEMORY:
    logger.info("Hugging Face Token gefunden.")
else:
    logger.warning("Kein Hugging Face Token gefunden. Falls benötigt, bitte setzen!")

# ------------------ Einstellungen für das Memory-Dataset ------------------
DATASET_REPO = "AiCodeCarft/customer_memory"

def load_memory_dataset():
    try:
        ds = load_dataset(DATASET_REPO, split="train")
        logger.info("Dataset erfolgreich vom HF Hub geladen.")
    except Exception as e:
        logger.info("Kein Dataset gefunden. Erstelle ein neues Dataset...")
        data = {"user_id": [], "query": [], "response": []}
        ds = Dataset.from_dict(data)
        ds.push_to_hub(DATASET_REPO)
        logger.info("Neues Dataset erfolgreich erstellt und gepusht.")
    return ds

def add_to_memory(user_id, query, response):
    ds = load_memory_dataset()
    new_entry = Dataset.from_dict({
        "user_id": [user_id],
        "query": [query],
        "response": [response]
    })
    updated_ds = concatenate_datasets([ds, new_entry])
    updated_ds.push_to_hub(DATASET_REPO)
    logger.info("Memory-Dataset erfolgreich aktualisiert.")

def get_memory(user_id):
    ds = load_memory_dataset()
    filtered_ds = ds.filter(lambda x: x["user_id"] == user_id)
    logger.info(f"Memory für User {user_id} abgerufen. {len(filtered_ds)} Einträge gefunden.")
    return filtered_ds

# ------------------ Streamlit App UI ------------------
st.title("AI Customer Support Agent with Memory 🛒")
st.caption("Chat with a customer support assistant who remembers your past interactions.")

# OpenAI API Key Eingabe oben in der Haupt-UI
openai_api_key = st.text_input("Enter OpenAI API Key", type="password")

if not openai_api_key:
    st.warning("⚠️ Please enter your OpenAI API key to continue.")
    st.stop()

openai.api_key = openai_api_key  # Direktes Setzen des API-Keys

# ------------------ Klasse: CustomerSupportAIAgent ------------------
class CustomerSupportAIAgent:
    def __init__(self):
        self.client = openai
        self.app_id = "customer-support"

    def handle_query(self, query, user_id=None):
        try:
            memories = get_memory(user_id)
            context = "Relevant past information:\n"
            if len(memories) > 0:
                for entry in memories:
                    context += f"- Query: {entry['query']}\n  Response: {entry['response']}\n"
            
            full_prompt = f"{context}\nCustomer: {query}\nSupport Agent:"
            
            # API-Key wird direkt übergeben
            answer = self.client.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=[
                    {"role": "system", "content": "You are a customer support AI for TechGadgets.com."},
                    {"role": "user", "content": full_prompt}
                ]
            ).choices[0].message.content
            
            add_to_memory(user_id, query, answer)
            return answer
        except Exception as e:
            logger.error(f"Fehler bei handle_query: {e}")
            return "Sorry, I encountered an error. Please try again later."

# ------------------ Initialisierung ------------------
support_agent = CustomerSupportAIAgent()

# ------------------ Sidebar-Komponenten ------------------
with st.sidebar:
    st.title("Customer ID")
    customer_id = st.text_input("Enter your Customer ID", key="customer_id")
    
    if 'customer_id' in st.session_state and st.session_state.customer_id:
        if st.button("Generate Synthetic Data"):
            # ... (deine bestehende Synthetic Data Logik)

# ------------------ Chat-History Management ------------------
if "messages" not in st.session_state:
    st.session_state.messages = []

# ------------------ Chat-Eingabe ------------------
if prompt := st.chat_input("How can I assist you today?"):
    if not customer_id:
        st.error("❌ Please enter a customer ID first")
        st.stop()
    
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    with st.spinner("Generating response..."):
        response = support_agent.handle_query(prompt, customer_id)
    
    st.session_state.messages.append({"role": "assistant", "content": response})

# ------------------ Nachrichten anzeigen ------------------
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])