from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer import torch #dataset_name = "timdettmers/openassistant-guanaco" ###Human ,.,,,,,, ###Assistant dataset_name = 'AlexanderDoria/novel17_test' #french novels dataset = load_dataset(dataset_name, split="train") demo.launch() model_name = "TinyPixel/Llama-2-7B-bf16-sharded" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True ) model.config.use_cache = False