Spaces:
Sleeping
Sleeping
File size: 14,600 Bytes
c1bc991 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# """
# Router Agent - The Coordinator
# Classifies user queries and routes them to appropriate specialist agents
# Now with Gemini API integration!
# """
# import re
# from .academic_agent import AcademicAgent
# from .drug_info_agent import DrugInfoAgent
# from .quiz_agent import QuizAgent
# from .mnemonic_agent import MnemonicAgent
# from .viva_agent import VivaAgent
# class RouterAgent:
# def __init__(self, gemini_model=None):
# # Store Gemini model
# self.model = gemini_model
# # Initialize specialist agents with Gemini model
# self.academic_agent = AcademicAgent(gemini_model)
# self.drug_info_agent = DrugInfoAgent(gemini_model)
# self.quiz_agent = QuizAgent(gemini_model)
# self.mnemonic_agent = MnemonicAgent(gemini_model)
# self.viva_agent = VivaAgent(gemini_model)
# # Define keywords for each agent type (Free-tier friendly classification)
# self.agent_keywords = {
# 'drug_info': [
# 'drug', 'medicine', 'medication', 'side effects', 'dosage',
# 'contraindication', 'interaction', 'pharmacology', 'therapeutic',
# 'adverse', 'mechanism', 'action', 'indication', 'prescription'
# ],
# 'quiz_generation': [
# 'quiz', 'test', 'questions', 'mcq', 'multiple choice',
# 'flashcard', 'practice', 'exam', 'assessment', 'evaluate'
# ],
# 'mnemonic_creation': [
# 'mnemonic', 'remember', 'memory', 'trick', 'acronym',
# 'rhyme', 'shortcut', 'memorize', 'recall', 'aide'
# ],
# 'viva_practice': [
# 'viva', 'oral', 'interview', 'practice session', 'mock',
# 'question answer', 'preparation', 'rehearse'
# ]
# }
# def classify_query_with_ai(self, query):
# """Use Gemini AI to classify queries more accurately"""
# if not self.model:
# return self.classify_query(query) # Fallback to keyword matching
# try:
# classification_prompt = f"""
# You are a query classifier for a pharmacy education AI assistant.
# Classify this user query into ONE of these categories:
# 1. academic_query - General academic questions about pharmacy, chemistry, biology, mechanisms
# 2. drug_info - Specific questions about drugs, medicines, side effects, dosages, interactions
# 3. quiz_generation - Requests to create quizzes, tests, MCQs, practice questions
# 4. mnemonic_creation - Requests for memory aids, mnemonics, acronyms, memory tricks
# 5. viva_practice - Requests for mock interviews, viva practice, oral exam preparation
# User Query: "{query}"
# Respond with ONLY the category name (e.g., "academic_query")
# """
# response = self.model.generate_content(classification_prompt)
# classification = response.text.strip().lower()
# # Validate the classification
# valid_types = ['academic_query', 'drug_info', 'quiz_generation', 'mnemonic_creation', 'viva_practice']
# if classification in valid_types:
# return classification
# else:
# return 'academic_query' # Default fallback
# except Exception as e:
# print(f"AI classification failed: {e}")
# return self.classify_query(query) # Fallback to keyword matching
# """
# Classify the user query into one of the agent categories
# Uses keyword matching for free-tier efficiency
# """
# query_lower = query.lower()
# # Count keyword matches for each agent type
# scores = {}
# for agent_type, keywords in self.agent_keywords.items():
# score = sum(1 for keyword in keywords if keyword in query_lower)
# scores[agent_type] = score
# # Special pattern matching for better accuracy
# if re.search(r'\b(what|explain|definition|mechanism|process|how does)\b', query_lower):
# scores['drug_info'] += 1 if any(drug_word in query_lower for drug_word in ['drug', 'medicine', 'pharmacology']) else 0
# scores.setdefault('academic_query', 0)
# scores['academic_query'] += 1
# if re.search(r'\b(create|make|generate|give me)\s+(quiz|questions|mcq)\b', query_lower):
# scores['quiz_generation'] += 2
# if re.search(r'\b(help.*remember|memory.*trick|mnemonic.*for)\b', query_lower):
# scores['mnemonic_creation'] += 2
# if re.search(r'\b(practice.*viva|mock.*interview|oral.*exam)\b', query_lower):
# scores['viva_practice'] += 2
# # Find the highest scoring agent type
# if max(scores.values()) == 0:
# return 'academic_query' # Default to academic for general questions
# return max(scores, key=scores.get)
# def route_query(self, query):
# """
# Route the query to the appropriate specialist agent
# """
# agent_type = self.classify_query(query)
# try:
# if agent_type == 'drug_info':
# response = self.drug_info_agent.process_query(query)
# elif agent_type == 'quiz_generation':
# response = self.quiz_agent.process_query(query)
# elif agent_type == 'mnemonic_creation':
# response = self.mnemonic_agent.process_query(query)
# elif agent_type == 'viva_practice':
# response = self.viva_agent.process_query(query)
# else: # academic_query or default
# response = self.academic_agent.process_query(query)
# agent_type = 'academic_query'
# # Add metadata to response
# if isinstance(response, dict):
# response['agent_type'] = agent_type
# return response
# else:
# return {
# 'message': response,
# 'agent_type': agent_type,
# 'success': True
# }
# except Exception as e:
# return {
# 'message': f"Router Error: {str(e)}",
# 'agent_type': 'error',
# 'success': False
# }
# # """
# # Router Agent - The Coordinator
# # Classifies user queries and routes them to appropriate specialist agents
# # """
# # import re
# # from .academic_agent import AcademicAgent
# # from .drug_info_agent import DrugInfoAgent
# # from .quiz_agent import QuizAgent
# # from .mnemonic_agent import MnemonicAgent
# # from .viva_agent import VivaAgent
# # class RouterAgent:
# # def __init__(self):
# # # Initialize specialist agents
# # self.academic_agent = AcademicAgent()
# # self.drug_info_agent = DrugInfoAgent()
# # self.quiz_agent = QuizAgent()
# # self.mnemonic_agent = MnemonicAgent()
# # self.viva_agent = VivaAgent()
# # # Define keywords for each agent type (Free-tier friendly classification)
# # self.agent_keywords = {
# # 'drug_info': [
# # 'drug', 'medicine', 'medication', 'side effects', 'dosage',
# # 'contraindication', 'interaction', 'pharmacology', 'therapeutic',
# # 'adverse', 'mechanism', 'action', 'indication', 'prescription'
# # ],
# # 'quiz_generation': [
# # 'quiz', 'test', 'questions', 'mcq', 'multiple choice',
# # 'flashcard', 'practice', 'exam', 'assessment', 'evaluate'
# # ],
# # 'mnemonic_creation': [
# # 'mnemonic', 'remember', 'memory', 'trick', 'acronym',
# # 'rhyme', 'shortcut', 'memorize', 'recall', 'aide'
# # ],
# # 'viva_practice': [
# # 'viva', 'oral', 'interview', 'practice session', 'mock',
# # 'question answer', 'preparation', 'rehearse'
# # ]
# # }
# # def classify_query(self, query):
# # """
# # Classify the user query into one of the agent categories
# # Uses keyword matching for free-tier efficiency
# # """
# # query_lower = query.lower()
# # # Count keyword matches for each agent type
# # scores = {}
# # for agent_type, keywords in self.agent_keywords.items():
# # score = sum(1 for keyword in keywords if keyword in query_lower)
# # scores[agent_type] = score
# # # Special pattern matching for better accuracy
# # if re.search(r'\b(what|explain|definition|mechanism|process|how does)\b', query_lower):
# # scores['drug_info'] += 1 if any(drug_word in query_lower for drug_word in ['drug', 'medicine', 'pharmacology']) else 0
# # scores.setdefault('academic_query', 0)
# # scores['academic_query'] += 1
# # if re.search(r'\b(create|make|generate|give me)\s+(quiz|questions|mcq)\b', query_lower):
# # scores['quiz_generation'] += 2
# # if re.search(r'\b(help.*remember|memory.*trick|mnemonic.*for)\b', query_lower):
# # scores['mnemonic_creation'] += 2
# # if re.search(r'\b(practice.*viva|mock.*interview|oral.*exam)\b', query_lower):
# # scores['viva_practice'] += 2
# # # Find the highest scoring agent type
# # if max(scores.values()) == 0:
# # return 'academic_query' # Default to academic for general questions
# # return max(scores, key=scores.get)
# # def route_query(self, query):
# # """
# # Route the query to the appropriate specialist agent
# # """
# # agent_type = self.classify_query(query)
# # try:
# # if agent_type == 'drug_info':
# # response = self.drug_info_agent.process_query(query)
# # elif agent_type == 'quiz_generation':
# # response = self.quiz_agent.process_query(query)
# # elif agent_type == 'mnemonic_creation':
# # response = self.mnemonic_agent.process_query(query)
# # elif agent_type == 'viva_practice':
# # response = self.viva_agent.process_query(query)
# # else: # academic_query or default
# # response = self.academic_agent.process_query(query)
# # agent_type = 'academic_query'
# # # Add metadata to response
# # if isinstance(response, dict):
# # response['agent_type'] = agent_type
# # return response
# # else:
# # return {
# # 'message': response,
# # 'agent_type': agent_type,
# # 'success': True
# # }
# # except Exception as e:
# # return {
# # 'message': f"Router Error: {str(e)}",
# # 'agent_type': 'error',
# # 'success': False
# # }
# agents/router_agent.py
"""
Router Agent - Directs queries to the appropriate specialist agent.
"""
import re
# Import all specialist agents
from .academic_agent import AcademicAgent
from .drug_info_agent import DrugInfoAgent
from .mnemonic_agent import MnemonicAgent
from .quiz_agent import QuizAgent
from .viva_agent import VivaAgent
class RouterAgent:
def __init__(self, gemini_model=None):
"""
Initializes the router and all specialist agents, passing the model to them.
"""
self.model = gemini_model
# Instantiate all agents
self.academic_agent = AcademicAgent(gemini_model)
self.drug_info_agent = DrugInfoAgent(gemini_model)
self.mnemonic_agent = MnemonicAgent(gemini_model)
self.quiz_agent = QuizAgent(gemini_model)
self.viva_agent = VivaAgent(gemini_model)
self.default_agent = self.academic_agent
def route_query(self, query: str, file_context: str = "", viva_state: dict = None):
"""
Determines the user's intent and routes the query to the correct agent.
Args:
query (str): The user's input query.
file_context (str): Text content from any uploaded files.
viva_state (dict): The current state of the viva session.
Returns:
dict: The response dictionary from the selected agent.
"""
query_lower = query.lower()
# --- Intent Detection Logic ---
# 1. Viva Agent: High priority to catch session-based commands
# If a viva session is active, or user wants to start/end one.
if viva_state and viva_state.get('active'):
# The VivaAgent itself handles all logic when a session is active
return self.viva_agent.process_query(query, file_context, viva_state)
if any(cmd in query_lower for cmd in ["viva", "interview"]):
return self.viva_agent.process_query(query, file_context, viva_state)
# 2. Mnemonic Agent
if any(cmd in query_lower for cmd in ["mnemonic", "memory aid", "remember"]):
return self.mnemonic_agent.process_query(query, file_context)
# 3. Quiz Agent
if any(cmd in query_lower for cmd in ["quiz", "test me", "flashcard"]):
return self.quiz_agent.process_query(query, file_context)
# 4. Drug Info Agent
# Uses keywords and also checks for common drug endings like 'ol', 'in', 'am'
if any(cmd in query_lower for cmd in ["drug", "medicine", "medication", "side effect", "dosage", "interaction"]):
return self.drug_info_agent.process_query(query, file_context)
if re.search(r'\b(paracetamol|ibuprofen|metformin|aspirin|amoxicillin)\b', query_lower):
return self.drug_info_agent.process_query(query, file_context)
# 5. Default to Academic Agent
# If no other intent is detected, it's likely a general academic question.
return self.academic_agent.process_query(query, file_context) |