Spaces:
Sleeping
Sleeping
File size: 29,425 Bytes
f39ba75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
# # # Shiva
# # from flask import Flask, render_template, request, jsonify, session
# # import os
# # from dotenv import load_dotenv
# # import json
# # import random
# # from werkzeug.utils import secure_filename
# # import google.generativeai as genai
# # from pathlib import Path
# # # Load environment variables
# # load_dotenv()
# # app = Flask(__name__)
# # app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'dev-secret-key')
# # app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# # # Configure upload settings
# # UPLOAD_FOLDER = 'uploads'
# # ALLOWED_EXTENSIONS = {'txt', 'pdf', 'docx', 'doc', 'json', 'csv'}
# # app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# # # Create upload directory
# # os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# # # Configure Gemini API
# # GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
# # if GEMINI_API_KEY:
# # genai.configure(api_key=GEMINI_API_KEY)
# # model = genai.GenerativeModel('gemini-1.5-pro')
# # print("✅ Gemini API configured successfully!")
# # else:
# # model = None
# # print("⚠️ No Gemini API key found. Using fallback responses.")
# # # Import agents and utilities
# # from agents.router_agent import RouterAgent
# # from utils.helpers import load_quotes, get_greeting
# # from utils.file_processor import FileProcessor
# # def allowed_file(filename):
# # return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# # class MyPharmaAI:
# # def __init__(self):
# # self.router = RouterAgent(model) # Pass model to router
# # self.quotes = load_quotes()
# # self.file_processor = FileProcessor()
# # def process_query(self, query, user_name="Student", uploaded_files=None):
# # """Process user query through the router agent with optional file context"""
# # try:
# # # Check if we have uploaded files to reference
# # file_context = ""
# # if uploaded_files and 'uploaded_files' in session:
# # file_context = self.get_file_context(session['uploaded_files'])
# # # Route the query to appropriate agent
# # response = self.router.route_query(query, file_context)
# # return {
# # 'success': True,
# # 'response': response,
# # 'agent_used': response.get('agent_type', 'unknown')
# # }
# # except Exception as e:
# # return {
# # 'success': False,
# # 'response': f"माफ करें (Sorry), I encountered an error: {str(e)}",
# # 'agent_used': 'error'
# # }
# # def get_file_context(self, uploaded_files):
# # """Get context from uploaded files"""
# # context = ""
# # for file_info in uploaded_files[-3:]: # Last 3 files only
# # file_path = file_info['path']
# # if os.path.exists(file_path):
# # try:
# # content = self.file_processor.extract_text(file_path)
# # if content:
# # context += f"\n\n📄 Content from {file_info['original_name']}:\n{content[:2000]}..." # Limit context
# # except Exception as e:
# # context += f"\n\n❌ Error reading {file_info['original_name']}: {str(e)}"
# # return context
# # def get_daily_quote(self):
# # """Get inspirational quote from Gita/Vedas"""
# # return random.choice(self.quotes) if self.quotes else "विद्या धनं सर्व धन प्रधानम्"
# # def process_file_upload(self, file):
# # """Process uploaded file and extract information"""
# # try:
# # if file and allowed_file(file.filename):
# # filename = secure_filename(file.filename)
# # timestamp = str(int(time.time()))
# # filename = f"{timestamp}_{filename}"
# # file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
# # file.save(file_path)
# # # Extract text content
# # content = self.file_processor.extract_text(file_path)
# # # Store in session
# # if 'uploaded_files' not in session:
# # session['uploaded_files'] = []
# # file_info = {
# # 'original_name': file.filename,
# # 'saved_name': filename,
# # 'path': file_path,
# # 'size': os.path.getsize(file_path),
# # 'preview': content[:500] if content else "No text content extracted"
# # }
# # session['uploaded_files'].append(file_info)
# # session.modified = True
# # return {
# # 'success': True,
# # 'message': f'File "{file.filename}" uploaded successfully! You can now ask questions about its content.',
# # 'file_info': file_info
# # }
# # else:
# # return {
# # 'success': False,
# # 'message': 'Invalid file type. Supported: TXT, PDF, DOCX, DOC, JSON, CSV'
# # }
# # except Exception as e:
# # return {
# # 'success': False,
# # 'message': f'Error uploading file: {str(e)}'
# # }
# # # Initialize the AI system
# # import time
# # pharma_ai = MyPharmaAI()
# # @app.route('/')
# # def index():
# # """Main chat interface"""
# # greeting = get_greeting()
# # daily_quote = pharma_ai.get_daily_quote()
# # # Get uploaded files info
# # uploaded_files = session.get('uploaded_files', [])
# # return render_template('index.html',
# # greeting=greeting,
# # daily_quote=daily_quote,
# # uploaded_files=uploaded_files,
# # api_available=bool(GEMINI_API_KEY))
# # @app.route('/chat', methods=['POST'])
# # def chat():
# # """Main chat endpoint"""
# # try:
# # data = request.get_json()
# # if not data or 'query' not in data:
# # return jsonify({
# # 'success': False,
# # 'error': 'No query provided'
# # }), 400
# # user_query = data.get('query', '').strip()
# # user_name = data.get('user_name', 'Student')
# # if not user_query:
# # return jsonify({
# # 'success': False,
# # 'error': 'Empty query'
# # }), 400
# # # Process the query (with file context if available)
# # result = pharma_ai.process_query(user_query, user_name, session.get('uploaded_files'))
# # return jsonify(result)
# # except Exception as e:
# # return jsonify({
# # 'success': False,
# # 'error': f'Server error: {str(e)}'
# # }), 500
# # @app.route('/upload', methods=['POST'])
# # def upload_file():
# # """Handle file upload"""
# # try:
# # if 'file' not in request.files:
# # return jsonify({
# # 'success': False,
# # 'error': 'No file provided'
# # }), 400
# # file = request.files['file']
# # if file.filename == '':
# # return jsonify({
# # 'success': False,
# # 'error': 'No file selected'
# # }), 400
# # result = pharma_ai.process_file_upload(file)
# # return jsonify(result)
# # except Exception as e:
# # return jsonify({
# # 'success': False,
# # 'error': f'Upload error: {str(e)}'
# # }), 500
# # @app.route('/files')
# # def get_uploaded_files():
# # """Get list of uploaded files"""
# # uploaded_files = session.get('uploaded_files', [])
# # return jsonify({
# # 'files': uploaded_files,
# # 'count': len(uploaded_files)
# # })
# # @app.route('/clear_files', methods=['POST'])
# # def clear_files():
# # """Clear uploaded files"""
# # try:
# # # Remove files from disk
# # if 'uploaded_files' in session:
# # for file_info in session['uploaded_files']:
# # file_path = file_info['path']
# # if os.path.exists(file_path):
# # os.remove(file_path)
# # # Clear session
# # session.pop('uploaded_files', None)
# # return jsonify({
# # 'success': True,
# # 'message': 'All files cleared successfully'
# # })
# # except Exception as e:
# # return jsonify({
# # 'success': False,
# # 'error': f'Error clearing files: {str(e)}'
# # }), 500
# # @app.route('/quote')
# # def get_quote():
# # """Get a random inspirational quote"""
# # quote = pharma_ai.get_daily_quote()
# # return jsonify({'quote': quote})
# # @app.route('/health')
# # def health_check():
# # """Health check endpoint"""
# # return jsonify({
# # 'status': 'healthy',
# # 'app': 'MyPharma AI',
# # 'version': '2.0.0',
# # 'gemini_api': 'connected' if GEMINI_API_KEY else 'not configured',
# # 'features': ['chat', 'file_upload', 'multi_agent', 'indian_theme']
# # })
# # if __name__ == '__main__':
# # # Create necessary directories
# # for directory in ['data', 'static/css', 'static/js', 'templates', 'agents', 'utils', 'uploads']:
# # os.makedirs(directory, exist_ok=True)
# # print("🇮🇳 MyPharma AI Starting...")
# # print(f"📁 Upload folder: {UPLOAD_FOLDER}")
# # print(f"🤖 Gemini API: {'✅ Ready' if GEMINI_API_KEY else '❌ Not configured'}")
# # print("🚀 Server starting on http://localhost:5000")
# # # Run the app
# # app.run(debug=True, port=5000)
# # # #### app.py (Main Application)
# # # from flask import Flask, render_template, request, jsonify
# # # import os
# # # from dotenv import load_dotenv
# # # import json
# # # import random
# # # # Load environment variables
# # # load_dotenv()
# # # app = Flask(__name__)
# # # app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'dev-secret-key')
# # # # Import agents
# # # from agents.router_agent import RouterAgent
# # # from utils.helpers import load_quotes, get_greeting
# # # class MyPharmaAI:
# # # def __init__(self):
# # # self.router = RouterAgent()
# # # self.quotes = load_quotes()
# # # def process_query(self, query, user_name="Student"):
# # # """Process user query through the router agent"""
# # # try:
# # # # Route the query to appropriate agent
# # # response = self.router.route_query(query)
# # # return {
# # # 'success': True,
# # # 'response': response,
# # # 'agent_used': response.get('agent_type', 'unknown')
# # # }
# # # except Exception as e:
# # # return {
# # # 'success': False,
# # # 'response': f"माफ करें (Sorry), I encountered an error: {str(e)}",
# # # 'agent_used': 'error'
# # # }
# # # def get_daily_quote(self):
# # # """Get inspirational quote from Gita/Vedas"""
# # # return random.choice(self.quotes) if self.quotes else "विद्या धनं सर्व धन प्रधानम्"
# # # # Initialize the AI system
# # # pharma_ai = MyPharmaAI()
# # # @app.route('/')
# # # def index():
# # # """Main chat interface"""
# # # greeting = get_greeting()
# # # daily_quote = pharma_ai.get_daily_quote()
# # # return render_template('index.html',
# # # greeting=greeting,
# # # daily_quote=daily_quote)
# # # @app.route('/chat', methods=['POST'])
# # # def chat():
# # # """Main chat endpoint"""
# # # try:
# # # data = request.get_json()
# # # if not data or 'query' not in data:
# # # return jsonify({
# # # 'success': False,
# # # 'error': 'No query provided'
# # # }), 400
# # # user_query = data.get('query', '').strip()
# # # user_name = data.get('user_name', 'Student')
# # # if not user_query:
# # # return jsonify({
# # # 'success': False,
# # # 'error': 'Empty query'
# # # }), 400
# # # # Process the query
# # # result = pharma_ai.process_query(user_query, user_name)
# # # return jsonify(result)
# # # except Exception as e:
# # # return jsonify({
# # # 'success': False,
# # # 'error': f'Server error: {str(e)}'
# # # }), 500
# # # @app.route('/quote')
# # # def get_quote():
# # # """Get a random inspirational quote"""
# # # quote = pharma_ai.get_daily_quote()
# # # return jsonify({'quote': quote})
# # # @app.route('/health')
# # # def health_check():
# # # """Health check endpoint"""
# # # return jsonify({
# # # 'status': 'healthy',
# # # 'app': 'MyPharma AI',
# # # 'version': '1.0.0'
# # # })
# # # if __name__ == '__main__':
# # # # Create data directories if they don't exist
# # # os.makedirs('data', exist_ok=True)
# # # os.makedirs('static/css', exist_ok=True)
# # # os.makedirs('static/js', exist_ok=True)
# # # os.makedirs('templates', exist_ok=True)
# # # os.makedirs('agents', exist_ok=True)
# # # os.makedirs('utils', exist_ok=True)
# # # # Run the app
# # # app.run(debug=True, port=5000)
# # app.py
# # Main Flask application for MyPharma AI
# from flask import Flask, render_template, request, jsonify, session
# import os
# import json
# import random
# import time
# from dotenv import load_dotenv
# from werkzeug.utils import secure_filename
# import google.generativeai as genai
# # Load environment variables from a .env file
# load_dotenv()
# # --- App Configuration ---
# app = Flask(__name__)
# app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'a-very-secret-key-for-dev')
# app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# # --- Upload Configuration ---
# UPLOAD_FOLDER = '/tmp/uploads'
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'docx', 'json', 'csv'}
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# # --- Gemini API Configuration ---
# GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
# model = None
# if GEMINI_API_KEY:
# try:
# genai.configure(api_key=GEMINI_API_KEY)
# # Using gemini-1.5-flash for speed and cost-effectiveness
# model = genai.GenerativeModel('gemini-1.5-flash')
# print("✅ Gemini 1.5 Flash Model configured successfully!")
# except Exception as e:
# print(f"❌ Error configuring Gemini API: {e}")
# else:
# print("⚠️ No Gemini API key found. AI features will be disabled.")
# # --- Import Agents and Utilities ---
# # (Ensure these files exist in their respective directories)
# from agents.router_agent import RouterAgent
# from utils.helpers import load_quotes, get_greeting
# from utils.file_processor import FileProcessor
# def allowed_file(filename):
# """Check if the uploaded file has an allowed extension."""
# return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# # --- Main AI Application Class ---
# class MyPharmaAI:
# """Orchestrator for the entire AI system."""
# def __init__(self):
# self.router = RouterAgent(model) # The router now gets the configured model
# self.quotes = load_quotes()
# self.file_processor = FileProcessor()
# def process_query(self, query, user_name="Student", viva_state=None, uploaded_files=None, chat_history=None):
# """Routes a user's query to the appropriate agent, handling context."""
# try:
# # This block correctly gets the file content from the session data
# file_context = ""
# if uploaded_files:
# file_context = self.get_file_context(uploaded_files)
# # This passes the file content and chat history to the router
# response_data = self.router.route_query(query, file_context, viva_state, chat_history)
# return {
# 'success': True,
# **response_data
# }
# except Exception as e:
# print(f"Error in MyPharmaAI.process_query: {e}")
# return {
# 'success': False,
# 'message': f"Sorry, a critical error occurred: {str(e)}",
# 'agent_used': 'error'
# }
# def get_file_context(self, uploaded_files_session):
# """Extracts text from the most recent files to use as context."""
# context = ""
# for file_info in uploaded_files_session[-3:]: # Limit to last 3 files
# file_path = file_info.get('path')
# if file_path and os.path.exists(file_path):
# try:
# content = self.file_processor.extract_text(file_path)
# if content:
# # Limit context from each file to 2000 characters
# context += f"\n\n--- Content from {file_info['original_name']} ---\n{content[:2000]}..."
# except Exception as e:
# context += f"\n\n--- Error reading {file_info['original_name']}: {str(e)} ---"
# return context
# def get_daily_quote(self):
# """Returns a random quote."""
# return random.choice(self.quotes) if self.quotes else "विद्या धनं सर्व धन प्रधानम्"
# # Initialize the AI system
# pharma_ai = MyPharmaAI()
# # --- Flask Routes ---
# @app.route('/')
# def index():
# """Renders the main chat interface."""
# greeting = get_greeting()
# daily_quote = pharma_ai.get_daily_quote()
# uploaded_files = session.get('uploaded_files', [])
# return render_template('index.html',
# greeting=greeting,
# daily_quote=daily_quote,
# uploaded_files=uploaded_files)
# @app.route('/chat', methods=['POST'])
# def chat():
# """Handles the main chat logic, including session management for the Viva Agent."""
# try:
# data = request.get_json()
# query = data.get('query', '').strip()
# if not query:
# return jsonify({'success': False, 'error': 'Empty query'}), 400
# # --- HISTORY MANAGEMENT START ---
# # Get the conversation history from the session (or start a new one)
# chat_history = session.get('chat_history', [])
# # Get current viva state from session for the Viva Agent
# viva_state = session.get('viva_state', None)
# uploaded_files = session.get('uploaded_files', None)
# # Process the query through the main orchestrator
# result = pharma_ai.process_query(query, viva_state=viva_state, uploaded_files=uploaded_files,chat_history=chat_history)
# # If the query was successful, update the history
# if result.get('success'):
# # Add the user's query and the AI's message to the history
# chat_history.append({'role': 'user', 'parts': [query]})
# chat_history.append({'role': 'model', 'parts': [result.get('message', '')]})
# # Keep the history from getting too long (e.g., last 10 exchanges)
# session['chat_history'] = chat_history[-20:]
# # --- HISTORY MANAGEMENT END ---
# # If the Viva agent returns an updated state, save it to the session
# if 'viva_state' in result:
# session['viva_state'] = result.get('viva_state')
# return jsonify(result)
# except Exception as e:
# print(f"Error in /chat endpoint: {e}")
# return jsonify({'success': False, 'error': f'Server error: {str(e)}'}), 500
# @app.route('/upload', methods=['POST'])
# def upload_file():
# """Handles file uploads."""
# if 'file' not in request.files:
# return jsonify({'success': False, 'error': 'No file part'}), 400
# file = request.files['file']
# if file.filename == '':
# return jsonify({'success': False, 'error': 'No selected file'}), 400
# if file and allowed_file(file.filename):
# filename = secure_filename(file.filename)
# file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
# file.save(file_path)
# if 'uploaded_files' not in session:
# session['uploaded_files'] = []
# file_info = {'original_name': filename, 'path': file_path}
# session['uploaded_files'].append(file_info)
# session.modified = True
# return jsonify({
# 'success': True,
# 'message': f'File "{filename}" uploaded. You can now ask questions about it.',
# 'files': session['uploaded_files']
# })
# return jsonify({'success': False, 'error': 'File type not allowed'}), 400
# @app.route('/files', methods=['GET'])
# def get_uploaded_files():
# """Returns the list of uploaded files from the session."""
# return jsonify({'files': session.get('uploaded_files', [])})
# @app.route('/clear_files', methods=['POST'])
# def clear_files():
# """Deletes uploaded files from disk and clears them from the session."""
# if 'uploaded_files' in session:
# for file_info in session['uploaded_files']:
# if os.path.exists(file_info['path']):
# os.remove(file_info['path'])
# session.pop('uploaded_files', None)
# session.pop('viva_state', None) # Also clear viva state
# return jsonify({'success': True, 'message': 'All files and sessions cleared.'})
# @app.route('/quote')
# def get_quote():
# """Returns a new random quote."""
# return jsonify({'quote': pharma_ai.get_daily_quote()})
# # --- Main Execution ---
# # if __name__ == '__main__':
# # # Ensure all necessary directories exist
# # for directory in ['data', 'static/css', 'static/js', 'templates', 'agents', 'utils', 'uploads']:
# # os.makedirs(directory, exist_ok=True)
# # print("🇮🇳 MyPharma AI Starting...")
# # print(f"🤖 Gemini API Status: {'✅ Ready' if model else '❌ Not configured'}")
# # print("🚀 Server starting on http://127.0.0.1:5000")
# # app.run(debug=True, port=5000)
# if __name__ == '__main__':
# # Create necessary directories (this is good practice)
# for directory in ['data', 'uploads', 'templates']:
# os.makedirs(directory, exist_ok=True)
# # Get port from environment variable, defaulting to 5000 for local testing
# port = int(os.environ.get('PORT', 7860))
# print("🇮🇳 MyPharma AI Starting...")
# print(f"🤖 Gemini API Status: {'✅ Ready' if model else '❌ Not configured'}")
# print(f"🚀 Server starting on http://0.0.0.0:{port}")
# # Run the app to be accessible on the server
# app.run(host='0.0.0.0', port=port)
# app.py
import os
import random
from dotenv import load_dotenv
from flask import Flask, render_template, request, jsonify, session
import google.generativeai as genai
# Import new langchain components and our helpers
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_community.vectorstores import FAISS
from utils.helpers import create_vector_store, get_greeting, load_quotes
from agents.router_agent import RouterAgent # Re-import the RouterAgent
# --- Initial Setup ---
load_dotenv()
# Create the knowledge library on first startup if it doesn't exist
create_vector_store()
# --- App Configuration ---
app = Flask(__name__)
app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'a-very-secret-key-for-dev')
# --- Gemini API & Knowledge Base Configuration ---
model = None
vector_store = None
try:
GEMINI_API_KEY = os.getenv('GOOGLE_API_KEY')
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-1.5-flash')
index_path = '/tmp/faiss_index'
if os.path.exists(index_path):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vector_store = FAISS.load_local(index_path, embeddings, allow_dangerous_deserialization=True)
print("✅ Gemini Model and Knowledge Base loaded successfully!")
else:
print("✅ Gemini Model loaded. No knowledge base found to load.")
else:
print("⚠️ No Gemini API key found.")
except Exception as e:
print(f"❌ Error during initialization: {e}")
# --- Main AI Application Class (Reinstated) ---
class MyPharmaAI:
def __init__(self, gemini_model, vector_store_db):
self.router = RouterAgent(gemini_model)
self.quotes = load_quotes()
self.vector_store = vector_store_db
def process_query(self, query, viva_state, chat_history):
# This is the core logic that combines both systems:
# 1. Search the permanent knowledge base for context.
file_context = ""
if self.vector_store:
relevant_docs = self.vector_store.similarity_search(query, k=4) # Get top 4 results
file_context = "\n".join(doc.page_content for doc in relevant_docs)
context_with_sources = []
for doc in relevant_docs:
# Clean up the source path to just the filename
source_filename = os.path.basename(doc.metadata.get('source', 'Unknown Source'))
# Page numbers from PyPDF are 0-indexed, so we add 1 for readability
page_number = doc.metadata.get('page', -1) + 1
context_with_sources.append(
f"[Source: {source_filename}, Page: {page_number}]\n{doc.page_content}"
)
file_context = "\n\n".join(context_with_sources)
# 2. Pass the retrieved context to the multi-agent router system.
return self.router.route_query(query, file_context, viva_state, chat_history)
pharma_ai = MyPharmaAI(model, vector_store)
# --- Flask Routes ---
@app.route('/')
def index():
# Use the correct template name
return render_template('index.html', greeting=get_greeting(), daily_quote=random.choice(pharma_ai.quotes))
@app.route('/chat', methods=['POST'])
def chat():
# This function is now the final, stable version.
try:
data = request.get_json()
query = data.get('query', '').strip()
if not query:
return jsonify({'success': False, 'error': 'Empty query'}), 400
chat_history = session.get('chat_history', [])
viva_state = session.get('viva_state', None)
# Get the result dictionary from the agent system
agent_result = pharma_ai.process_query(query, viva_state, chat_history)
# --- THIS IS THE FIX ---
# We now build the final JSON response to match what the JavaScript expects.
if "error" in agent_result.get('status', ''):
final_response = {
'success': False,
'error': agent_result.get('message', 'An unknown error occurred.'),
'agent_used': agent_result.get('agent_used', 'error')
}
else:
final_response = {
'success': True,
'message': agent_result.get('message', 'Sorry, I could not generate a response.'),
'agent_used': agent_result.get('agent_used', 'academic')
}
# --- END OF FIX ---
# Update chat history if the call was successful
if final_response.get('success'):
chat_history.append({'role': 'user', 'parts': [query]})
chat_history.append({'role': 'model', 'parts': [final_response.get('message', '')]})
session['chat_history'] = chat_history[-10:]
# Handle Viva state if present (no changes needed here)
if 'viva_state' in agent_result:
session['viva_state'] = agent_result.get('viva_state')
return jsonify(final_response)
except Exception as e:
print(f"Critical Error in /chat endpoint: {e}")
return jsonify({'success': False, 'error': f'A critical server error occurred: {e}', 'agent_used': 'error'}), 500
# --- Main Execution ---
if __name__ == '__main__':
# app.run(host='127.0.0.1', port=5000, debug=True)
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port) |