Spaces:
Sleeping
Sleeping
Ajey95
commited on
Commit
·
fc88e67
1
Parent(s):
bb036c7
Fix: chat_history addition
Browse files- agents/router_agent.py +25 -338
agents/router_agent.py
CHANGED
@@ -1,280 +1,6 @@
|
|
1 |
-
# """
|
2 |
-
# Router Agent - The Coordinator
|
3 |
-
# Classifies user queries and routes them to appropriate specialist agents
|
4 |
-
# Now with Gemini API integration!
|
5 |
-
# """
|
6 |
-
|
7 |
-
# import re
|
8 |
-
# from .academic_agent import AcademicAgent
|
9 |
-
# from .drug_info_agent import DrugInfoAgent
|
10 |
-
# from .quiz_agent import QuizAgent
|
11 |
-
# from .mnemonic_agent import MnemonicAgent
|
12 |
-
# from .viva_agent import VivaAgent
|
13 |
-
|
14 |
-
# class RouterAgent:
|
15 |
-
# def __init__(self, gemini_model=None):
|
16 |
-
# # Store Gemini model
|
17 |
-
# self.model = gemini_model
|
18 |
-
|
19 |
-
# # Initialize specialist agents with Gemini model
|
20 |
-
# self.academic_agent = AcademicAgent(gemini_model)
|
21 |
-
# self.drug_info_agent = DrugInfoAgent(gemini_model)
|
22 |
-
# self.quiz_agent = QuizAgent(gemini_model)
|
23 |
-
# self.mnemonic_agent = MnemonicAgent(gemini_model)
|
24 |
-
# self.viva_agent = VivaAgent(gemini_model)
|
25 |
-
|
26 |
-
# # Define keywords for each agent type (Free-tier friendly classification)
|
27 |
-
# self.agent_keywords = {
|
28 |
-
# 'drug_info': [
|
29 |
-
# 'drug', 'medicine', 'medication', 'side effects', 'dosage',
|
30 |
-
# 'contraindication', 'interaction', 'pharmacology', 'therapeutic',
|
31 |
-
# 'adverse', 'mechanism', 'action', 'indication', 'prescription'
|
32 |
-
# ],
|
33 |
-
# 'quiz_generation': [
|
34 |
-
# 'quiz', 'test', 'questions', 'mcq', 'multiple choice',
|
35 |
-
# 'flashcard', 'practice', 'exam', 'assessment', 'evaluate'
|
36 |
-
# ],
|
37 |
-
# 'mnemonic_creation': [
|
38 |
-
# 'mnemonic', 'remember', 'memory', 'trick', 'acronym',
|
39 |
-
# 'rhyme', 'shortcut', 'memorize', 'recall', 'aide'
|
40 |
-
# ],
|
41 |
-
# 'viva_practice': [
|
42 |
-
# 'viva', 'oral', 'interview', 'practice session', 'mock',
|
43 |
-
# 'question answer', 'preparation', 'rehearse'
|
44 |
-
# ]
|
45 |
-
# }
|
46 |
-
|
47 |
-
# def classify_query_with_ai(self, query):
|
48 |
-
# """Use Gemini AI to classify queries more accurately"""
|
49 |
-
# if not self.model:
|
50 |
-
# return self.classify_query(query) # Fallback to keyword matching
|
51 |
-
|
52 |
-
# try:
|
53 |
-
# classification_prompt = f"""
|
54 |
-
# You are a query classifier for a pharmacy education AI assistant.
|
55 |
-
# Classify this user query into ONE of these categories:
|
56 |
-
|
57 |
-
# 1. academic_query - General academic questions about pharmacy, chemistry, biology, mechanisms
|
58 |
-
# 2. drug_info - Specific questions about drugs, medicines, side effects, dosages, interactions
|
59 |
-
# 3. quiz_generation - Requests to create quizzes, tests, MCQs, practice questions
|
60 |
-
# 4. mnemonic_creation - Requests for memory aids, mnemonics, acronyms, memory tricks
|
61 |
-
# 5. viva_practice - Requests for mock interviews, viva practice, oral exam preparation
|
62 |
-
|
63 |
-
# User Query: "{query}"
|
64 |
-
|
65 |
-
# Respond with ONLY the category name (e.g., "academic_query")
|
66 |
-
# """
|
67 |
-
|
68 |
-
# response = self.model.generate_content(classification_prompt)
|
69 |
-
# classification = response.text.strip().lower()
|
70 |
-
|
71 |
-
# # Validate the classification
|
72 |
-
# valid_types = ['academic_query', 'drug_info', 'quiz_generation', 'mnemonic_creation', 'viva_practice']
|
73 |
-
# if classification in valid_types:
|
74 |
-
# return classification
|
75 |
-
# else:
|
76 |
-
# return 'academic_query' # Default fallback
|
77 |
-
|
78 |
-
# except Exception as e:
|
79 |
-
# print(f"AI classification failed: {e}")
|
80 |
-
# return self.classify_query(query) # Fallback to keyword matching
|
81 |
-
# """
|
82 |
-
# Classify the user query into one of the agent categories
|
83 |
-
# Uses keyword matching for free-tier efficiency
|
84 |
-
# """
|
85 |
-
# query_lower = query.lower()
|
86 |
-
|
87 |
-
# # Count keyword matches for each agent type
|
88 |
-
# scores = {}
|
89 |
-
|
90 |
-
# for agent_type, keywords in self.agent_keywords.items():
|
91 |
-
# score = sum(1 for keyword in keywords if keyword in query_lower)
|
92 |
-
# scores[agent_type] = score
|
93 |
-
|
94 |
-
# # Special pattern matching for better accuracy
|
95 |
-
# if re.search(r'\b(what|explain|definition|mechanism|process|how does)\b', query_lower):
|
96 |
-
# scores['drug_info'] += 1 if any(drug_word in query_lower for drug_word in ['drug', 'medicine', 'pharmacology']) else 0
|
97 |
-
# scores.setdefault('academic_query', 0)
|
98 |
-
# scores['academic_query'] += 1
|
99 |
-
|
100 |
-
# if re.search(r'\b(create|make|generate|give me)\s+(quiz|questions|mcq)\b', query_lower):
|
101 |
-
# scores['quiz_generation'] += 2
|
102 |
-
|
103 |
-
# if re.search(r'\b(help.*remember|memory.*trick|mnemonic.*for)\b', query_lower):
|
104 |
-
# scores['mnemonic_creation'] += 2
|
105 |
-
|
106 |
-
# if re.search(r'\b(practice.*viva|mock.*interview|oral.*exam)\b', query_lower):
|
107 |
-
# scores['viva_practice'] += 2
|
108 |
-
|
109 |
-
# # Find the highest scoring agent type
|
110 |
-
# if max(scores.values()) == 0:
|
111 |
-
# return 'academic_query' # Default to academic for general questions
|
112 |
-
|
113 |
-
# return max(scores, key=scores.get)
|
114 |
-
|
115 |
-
# def route_query(self, query):
|
116 |
-
# """
|
117 |
-
# Route the query to the appropriate specialist agent
|
118 |
-
# """
|
119 |
-
# agent_type = self.classify_query(query)
|
120 |
-
|
121 |
-
# try:
|
122 |
-
# if agent_type == 'drug_info':
|
123 |
-
# response = self.drug_info_agent.process_query(query)
|
124 |
-
# elif agent_type == 'quiz_generation':
|
125 |
-
# response = self.quiz_agent.process_query(query)
|
126 |
-
# elif agent_type == 'mnemonic_creation':
|
127 |
-
# response = self.mnemonic_agent.process_query(query)
|
128 |
-
# elif agent_type == 'viva_practice':
|
129 |
-
# response = self.viva_agent.process_query(query)
|
130 |
-
# else: # academic_query or default
|
131 |
-
# response = self.academic_agent.process_query(query)
|
132 |
-
# agent_type = 'academic_query'
|
133 |
-
|
134 |
-
# # Add metadata to response
|
135 |
-
# if isinstance(response, dict):
|
136 |
-
# response['agent_type'] = agent_type
|
137 |
-
# return response
|
138 |
-
# else:
|
139 |
-
# return {
|
140 |
-
# 'message': response,
|
141 |
-
# 'agent_type': agent_type,
|
142 |
-
# 'success': True
|
143 |
-
# }
|
144 |
-
|
145 |
-
# except Exception as e:
|
146 |
-
# return {
|
147 |
-
# 'message': f"Router Error: {str(e)}",
|
148 |
-
# 'agent_type': 'error',
|
149 |
-
# 'success': False
|
150 |
-
# }
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
# # """
|
158 |
-
# # Router Agent - The Coordinator
|
159 |
-
# # Classifies user queries and routes them to appropriate specialist agents
|
160 |
-
# # """
|
161 |
-
|
162 |
-
# # import re
|
163 |
-
# # from .academic_agent import AcademicAgent
|
164 |
-
# # from .drug_info_agent import DrugInfoAgent
|
165 |
-
# # from .quiz_agent import QuizAgent
|
166 |
-
# # from .mnemonic_agent import MnemonicAgent
|
167 |
-
# # from .viva_agent import VivaAgent
|
168 |
-
|
169 |
-
# # class RouterAgent:
|
170 |
-
# # def __init__(self):
|
171 |
-
# # # Initialize specialist agents
|
172 |
-
# # self.academic_agent = AcademicAgent()
|
173 |
-
# # self.drug_info_agent = DrugInfoAgent()
|
174 |
-
# # self.quiz_agent = QuizAgent()
|
175 |
-
# # self.mnemonic_agent = MnemonicAgent()
|
176 |
-
# # self.viva_agent = VivaAgent()
|
177 |
-
|
178 |
-
# # # Define keywords for each agent type (Free-tier friendly classification)
|
179 |
-
# # self.agent_keywords = {
|
180 |
-
# # 'drug_info': [
|
181 |
-
# # 'drug', 'medicine', 'medication', 'side effects', 'dosage',
|
182 |
-
# # 'contraindication', 'interaction', 'pharmacology', 'therapeutic',
|
183 |
-
# # 'adverse', 'mechanism', 'action', 'indication', 'prescription'
|
184 |
-
# # ],
|
185 |
-
# # 'quiz_generation': [
|
186 |
-
# # 'quiz', 'test', 'questions', 'mcq', 'multiple choice',
|
187 |
-
# # 'flashcard', 'practice', 'exam', 'assessment', 'evaluate'
|
188 |
-
# # ],
|
189 |
-
# # 'mnemonic_creation': [
|
190 |
-
# # 'mnemonic', 'remember', 'memory', 'trick', 'acronym',
|
191 |
-
# # 'rhyme', 'shortcut', 'memorize', 'recall', 'aide'
|
192 |
-
# # ],
|
193 |
-
# # 'viva_practice': [
|
194 |
-
# # 'viva', 'oral', 'interview', 'practice session', 'mock',
|
195 |
-
# # 'question answer', 'preparation', 'rehearse'
|
196 |
-
# # ]
|
197 |
-
# # }
|
198 |
-
|
199 |
-
# # def classify_query(self, query):
|
200 |
-
# # """
|
201 |
-
# # Classify the user query into one of the agent categories
|
202 |
-
# # Uses keyword matching for free-tier efficiency
|
203 |
-
# # """
|
204 |
-
# # query_lower = query.lower()
|
205 |
-
|
206 |
-
# # # Count keyword matches for each agent type
|
207 |
-
# # scores = {}
|
208 |
-
|
209 |
-
# # for agent_type, keywords in self.agent_keywords.items():
|
210 |
-
# # score = sum(1 for keyword in keywords if keyword in query_lower)
|
211 |
-
# # scores[agent_type] = score
|
212 |
-
|
213 |
-
# # # Special pattern matching for better accuracy
|
214 |
-
# # if re.search(r'\b(what|explain|definition|mechanism|process|how does)\b', query_lower):
|
215 |
-
# # scores['drug_info'] += 1 if any(drug_word in query_lower for drug_word in ['drug', 'medicine', 'pharmacology']) else 0
|
216 |
-
# # scores.setdefault('academic_query', 0)
|
217 |
-
# # scores['academic_query'] += 1
|
218 |
-
|
219 |
-
# # if re.search(r'\b(create|make|generate|give me)\s+(quiz|questions|mcq)\b', query_lower):
|
220 |
-
# # scores['quiz_generation'] += 2
|
221 |
-
|
222 |
-
# # if re.search(r'\b(help.*remember|memory.*trick|mnemonic.*for)\b', query_lower):
|
223 |
-
# # scores['mnemonic_creation'] += 2
|
224 |
-
|
225 |
-
# # if re.search(r'\b(practice.*viva|mock.*interview|oral.*exam)\b', query_lower):
|
226 |
-
# # scores['viva_practice'] += 2
|
227 |
-
|
228 |
-
# # # Find the highest scoring agent type
|
229 |
-
# # if max(scores.values()) == 0:
|
230 |
-
# # return 'academic_query' # Default to academic for general questions
|
231 |
-
|
232 |
-
# # return max(scores, key=scores.get)
|
233 |
-
|
234 |
-
# # def route_query(self, query):
|
235 |
-
# # """
|
236 |
-
# # Route the query to the appropriate specialist agent
|
237 |
-
# # """
|
238 |
-
# # agent_type = self.classify_query(query)
|
239 |
-
|
240 |
-
# # try:
|
241 |
-
# # if agent_type == 'drug_info':
|
242 |
-
# # response = self.drug_info_agent.process_query(query)
|
243 |
-
# # elif agent_type == 'quiz_generation':
|
244 |
-
# # response = self.quiz_agent.process_query(query)
|
245 |
-
# # elif agent_type == 'mnemonic_creation':
|
246 |
-
# # response = self.mnemonic_agent.process_query(query)
|
247 |
-
# # elif agent_type == 'viva_practice':
|
248 |
-
# # response = self.viva_agent.process_query(query)
|
249 |
-
# # else: # academic_query or default
|
250 |
-
# # response = self.academic_agent.process_query(query)
|
251 |
-
# # agent_type = 'academic_query'
|
252 |
-
|
253 |
-
# # # Add metadata to response
|
254 |
-
# # if isinstance(response, dict):
|
255 |
-
# # response['agent_type'] = agent_type
|
256 |
-
# # return response
|
257 |
-
# # else:
|
258 |
-
# # return {
|
259 |
-
# # 'message': response,
|
260 |
-
# # 'agent_type': agent_type,
|
261 |
-
# # 'success': True
|
262 |
-
# # }
|
263 |
-
|
264 |
-
# # except Exception as e:
|
265 |
-
# # return {
|
266 |
-
# # 'message': f"Router Error: {str(e)}",
|
267 |
-
# # 'agent_type': 'error',
|
268 |
-
# # 'success': False
|
269 |
-
# # }
|
270 |
-
|
271 |
# agents/router_agent.py
|
272 |
-
"""
|
273 |
-
Router Agent - Directs queries to the appropriate specialist agent.
|
274 |
-
"""
|
275 |
-
import re
|
276 |
|
277 |
-
|
278 |
from .academic_agent import AcademicAgent
|
279 |
from .drug_info_agent import DrugInfoAgent
|
280 |
from .mnemonic_agent import MnemonicAgent
|
@@ -284,82 +10,43 @@ from .viva_agent import VivaAgent
|
|
284 |
class RouterAgent:
|
285 |
def __init__(self, gemini_model=None):
|
286 |
"""
|
287 |
-
Initializes the router and all specialist agents
|
288 |
"""
|
289 |
-
self.model = gemini_model
|
290 |
-
# Instantiate all agents
|
291 |
self.academic_agent = AcademicAgent(gemini_model)
|
292 |
self.drug_info_agent = DrugInfoAgent(gemini_model)
|
293 |
self.mnemonic_agent = MnemonicAgent(gemini_model)
|
294 |
self.quiz_agent = QuizAgent(gemini_model)
|
295 |
self.viva_agent = VivaAgent(gemini_model)
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
"""
|
300 |
Determines the user's intent and routes the query with all necessary
|
301 |
context to the correct specialist agent.
|
302 |
"""
|
303 |
-
|
304 |
-
|
305 |
-
# --- Intent Detection Logic ---
|
306 |
-
if viva_state and viva_state.get('active'):
|
307 |
-
return self.viva_agent.process_query(query, file_context, viva_state)
|
308 |
-
if any(cmd in query_lower for cmd in ["viva", "interview", "start viva"]):
|
309 |
-
return self.viva_agent.process_query(query, file_context, viva_state)
|
310 |
-
|
311 |
-
if any(cmd in query_lower for cmd in ["mnemonic", "memory aid", "remember"]):
|
312 |
-
return self.mnemonic_agent.process_query(query, file_context, chat_history)
|
313 |
|
314 |
-
|
315 |
-
return self.quiz_agent.process_query(query, file_context, chat_history)
|
316 |
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
319 |
|
320 |
-
|
321 |
-
|
|
|
322 |
|
|
|
|
|
|
|
323 |
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
# file_context (str): Text content from any uploaded files.
|
331 |
-
# viva_state (dict): The current state of the viva session.
|
332 |
-
|
333 |
-
# Returns:
|
334 |
-
# dict: The response dictionary from the selected agent.
|
335 |
-
# """
|
336 |
-
# query_lower = query.lower()
|
337 |
-
|
338 |
-
# # --- Intent Detection Logic ---
|
339 |
-
|
340 |
-
# # 1. Viva Agent: High priority to catch session-based commands
|
341 |
-
# # If a viva session is active, or user wants to start/end one.
|
342 |
-
# if viva_state and viva_state.get('active'):
|
343 |
-
# # The VivaAgent itself handles all logic when a session is active
|
344 |
-
# return self.viva_agent.process_query(query, file_context, viva_state)
|
345 |
-
# if any(cmd in query_lower for cmd in ["viva", "interview"]):
|
346 |
-
# return self.viva_agent.process_query(query, file_context, viva_state)
|
347 |
-
|
348 |
-
# # 2. Mnemonic Agent
|
349 |
-
# if any(cmd in query_lower for cmd in ["mnemonic", "memory aid", "remember"]):
|
350 |
-
# return self.mnemonic_agent.process_query(query, file_context,chat_history)
|
351 |
-
|
352 |
-
# # 3. Quiz Agent
|
353 |
-
# if any(cmd in query_lower for cmd in ["quiz", "test me", "flashcard"]):
|
354 |
-
# return self.quiz_agent.process_query(query, file_context,chat_history)
|
355 |
-
|
356 |
-
# # 4. Drug Info Agent
|
357 |
-
# # Uses keywords and also checks for common drug endings like 'ol', 'in', 'am'
|
358 |
-
# if any(cmd in query_lower for cmd in ["drug", "medicine", "medication", "side effect", "dosage", "interaction"]):
|
359 |
-
# return self.drug_info_agent.process_query(query, file_context,chat_history)
|
360 |
-
# if re.search(r'\b(paracetamol|ibuprofen|metformin|aspirin|amoxicillin)\b', query_lower):
|
361 |
-
# return self.drug_info_agent.process_query(query, file_context)
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
# return self.academic_agent.process_query(query, file_context,chat_history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# agents/router_agent.py
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import re
|
4 |
from .academic_agent import AcademicAgent
|
5 |
from .drug_info_agent import DrugInfoAgent
|
6 |
from .mnemonic_agent import MnemonicAgent
|
|
|
10 |
class RouterAgent:
|
11 |
def __init__(self, gemini_model=None):
|
12 |
"""
|
13 |
+
Initializes the router and all specialist agents.
|
14 |
"""
|
|
|
|
|
15 |
self.academic_agent = AcademicAgent(gemini_model)
|
16 |
self.drug_info_agent = DrugInfoAgent(gemini_model)
|
17 |
self.mnemonic_agent = MnemonicAgent(gemini_model)
|
18 |
self.quiz_agent = QuizAgent(gemini_model)
|
19 |
self.viva_agent = VivaAgent(gemini_model)
|
20 |
+
|
21 |
+
def route_query(self, query: str, file_context: str, viva_state: dict, chat_history: list):
|
22 |
+
"""
|
|
|
23 |
Determines the user's intent and routes the query with all necessary
|
24 |
context to the correct specialist agent.
|
25 |
"""
|
26 |
+
query_lower = query.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# --- Intent Detection Logic ---
|
|
|
29 |
|
30 |
+
# 1. Viva Agent (High priority for session commands)
|
31 |
+
if viva_state and viva_state.get('active'):
|
32 |
+
return self.viva_agent.process_query(query, file_context, viva_state)
|
33 |
+
if any(cmd in query_lower for cmd in ["viva", "interview", "start viva"]):
|
34 |
+
return self.viva_agent.process_query(query, file_context, viva_state)
|
35 |
|
36 |
+
# 2. Mnemonic Agent
|
37 |
+
if any(cmd in query_lower for cmd in ["mnemonic", "memory aid", "remember"]):
|
38 |
+
return self.mnemonic_agent.process_query(query, file_context, chat_history)
|
39 |
|
40 |
+
# 3. Quiz Agent
|
41 |
+
if any(cmd in query_lower for cmd in ["quiz", "test me", "flashcard"]):
|
42 |
+
return self.quiz_agent.process_query(query, file_context, chat_history)
|
43 |
|
44 |
+
# 4. Drug Info Agent
|
45 |
+
drug_keywords = ["drug", "medicine", "medication", "side effect", "dosage"]
|
46 |
+
specific_drugs = r'\b(paracetamol|ibuprofen|metformin|aspirin|amoxicillin)\b'
|
47 |
|
48 |
+
if any(cmd in query_lower for cmd in drug_keywords) or re.search(specific_drugs, query_lower):
|
49 |
+
return self.drug_info_agent.process_query(query, file_context, chat_history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# 5. Default to Academic Agent for general queries
|
52 |
+
return self.academic_agent.process_query(query, file_context, chat_history)
|
|