Spaces:
Sleeping
Sleeping
File size: 5,017 Bytes
9d912f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
"""
ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
"""
import os
import torch
import utils
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics import Accuracy
from torchvision.datasets import CIFAR10
from pytorch_lightning import LightningModule
from torch.utils.data import DataLoader, random_split
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(LightningModule):
def __init__(self, block, num_blocks, num_classes=10, loss='cross_entropy', learning_rate=2e-4, momentum=0.9, optimizer="SGD",
epochs=20):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
self.accuracy = Accuracy(task="multiclass", num_classes=num_classes)
self.learning_rate = learning_rate
self.optimizer = optimizer
self.momentum = momentum
self.loss = utils.get_criterion(loss)
self.epochs = epochs
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def training_step(self, batch, batch_idx):
x, y = batch
loss = self.loss(self(x), y)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.loss(logits, y)
preds = torch.argmax(logits, dim=1)
self.accuracy(preds, y)
# Calling self.log will surface up scalars for you in TensorBoard
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", self.accuracy, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
# Here we just reuse the validation_step for testing
return self.validation_step(batch, batch_idx)
def configure_optimizers(self):
optimizer = utils.get_optimizer(self, lr=self.learning_rate, momentum=self.momentum, optimizer_type="SGD")
max_lr = utils.get_learning_rate(self, optimizer, self.loss, self.trainer.datamodule.train_dataloader())
scheduler = utils.get_OneCycleLR_scheduler(optimizer, max_lr=max_lr, epochs=self.epochs,
steps_per_epoch=len(self.trainer.datamodule.train_dataloader()), max_at_epoch=5,
anneal_strategy = 'linear', div_factor=10,
final_div_factor=1)
return [optimizer],[{"scheduler": scheduler, "interval": "step", "frequency": 1}]
def ResNet18(loss='cross_entropy', learning_rate=2e-4, momentum=0.9, optimizer="SGD", epochs=20):
return ResNet(BasicBlock, [2, 2, 2, 2], loss=loss, learning_rate=learning_rate, momentum=momentum,
optimizer=optimizer, epochs=epochs)
def ResNet34(loss='cross_entropy', learning_rate=2e-4, momentum=0.9, optimizer="SGD", epochs=20):
return ResNet(BasicBlock, [3, 4, 6, 3], loss=loss, learning_rate=learning_rate, momentum=momentum,
optimizer=optimizer, epochs=epochs)
|