Spaces:
Sleeping
Sleeping
Commit
·
47b7204
1
Parent(s):
61e2a55
Add grad cam checkbox
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ def resize_image_pil(image, new_width, new_height):
|
|
39 |
|
40 |
return resized
|
41 |
|
42 |
-
def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
43 |
input_img = resize_image_pil(input_img, 32, 32)
|
44 |
|
45 |
input_img = np.array(input_img)
|
@@ -54,11 +54,14 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
|
54 |
o = softmax(outputs.flatten())
|
55 |
confidences = {classes[i]: float(o[i]) for i in range(10)}
|
56 |
_, prediction = torch.max(outputs, 1)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
62 |
return classes[prediction[0].item()], visualization, confidences
|
63 |
|
64 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
@@ -67,8 +70,9 @@ examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
|
|
67 |
demo = gr.Interface(
|
68 |
inference,
|
69 |
inputs = [
|
70 |
-
gr.Image(width=256, height=256, label="Input Image"),
|
71 |
-
(0, 1, value = 0.5, label="Overall Opacity of Image"),
|
|
|
72 |
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
73 |
],
|
74 |
outputs = [
|
|
|
39 |
|
40 |
return resized
|
41 |
|
42 |
+
def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_number = -1):
|
43 |
input_img = resize_image_pil(input_img, 32, 32)
|
44 |
|
45 |
input_img = np.array(input_img)
|
|
|
54 |
o = softmax(outputs.flatten())
|
55 |
confidences = {classes[i]: float(o[i]) for i in range(10)}
|
56 |
_, prediction = torch.max(outputs, 1)
|
57 |
+
if is_grad_cam:
|
58 |
+
target_layers = [model.layer2[target_layer_number]]
|
59 |
+
cam = GradCAM(model=model, target_layers=target_layers)
|
60 |
+
grayscale_cam = cam(input_tensor=input_img, targets=None)
|
61 |
+
grayscale_cam = grayscale_cam[0, :]
|
62 |
+
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
63 |
+
else:
|
64 |
+
visualization = None
|
65 |
return classes[prediction[0].item()], visualization, confidences
|
66 |
|
67 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
|
|
70 |
demo = gr.Interface(
|
71 |
inference,
|
72 |
inputs = [
|
73 |
+
gr.Image(width=256, height=256, label="Input Image"),
|
74 |
+
gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
|
75 |
+
gr.Checkbox(label="Show GradCAM"),
|
76 |
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
77 |
],
|
78 |
outputs = [
|