Spaces:
Sleeping
Sleeping
Commit
·
47b7204
1
Parent(s):
61e2a55
Add grad cam checkbox
Browse files
app.py
CHANGED
|
@@ -39,7 +39,7 @@ def resize_image_pil(image, new_width, new_height):
|
|
| 39 |
|
| 40 |
return resized
|
| 41 |
|
| 42 |
-
def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
| 43 |
input_img = resize_image_pil(input_img, 32, 32)
|
| 44 |
|
| 45 |
input_img = np.array(input_img)
|
|
@@ -54,11 +54,14 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
|
| 54 |
o = softmax(outputs.flatten())
|
| 55 |
confidences = {classes[i]: float(o[i]) for i in range(10)}
|
| 56 |
_, prediction = torch.max(outputs, 1)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
return classes[prediction[0].item()], visualization, confidences
|
| 63 |
|
| 64 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
|
@@ -67,8 +70,9 @@ examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
|
|
| 67 |
demo = gr.Interface(
|
| 68 |
inference,
|
| 69 |
inputs = [
|
| 70 |
-
gr.Image(width=256, height=256, label="Input Image"),
|
| 71 |
-
(0, 1, value = 0.5, label="Overall Opacity of Image"),
|
|
|
|
| 72 |
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
| 73 |
],
|
| 74 |
outputs = [
|
|
|
|
| 39 |
|
| 40 |
return resized
|
| 41 |
|
| 42 |
+
def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_number = -1):
|
| 43 |
input_img = resize_image_pil(input_img, 32, 32)
|
| 44 |
|
| 45 |
input_img = np.array(input_img)
|
|
|
|
| 54 |
o = softmax(outputs.flatten())
|
| 55 |
confidences = {classes[i]: float(o[i]) for i in range(10)}
|
| 56 |
_, prediction = torch.max(outputs, 1)
|
| 57 |
+
if is_grad_cam:
|
| 58 |
+
target_layers = [model.layer2[target_layer_number]]
|
| 59 |
+
cam = GradCAM(model=model, target_layers=target_layers)
|
| 60 |
+
grayscale_cam = cam(input_tensor=input_img, targets=None)
|
| 61 |
+
grayscale_cam = grayscale_cam[0, :]
|
| 62 |
+
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
| 63 |
+
else:
|
| 64 |
+
visualization = None
|
| 65 |
return classes[prediction[0].item()], visualization, confidences
|
| 66 |
|
| 67 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
|
|
|
| 70 |
demo = gr.Interface(
|
| 71 |
inference,
|
| 72 |
inputs = [
|
| 73 |
+
gr.Image(width=256, height=256, label="Input Image"),
|
| 74 |
+
gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
|
| 75 |
+
gr.Checkbox(label="Show GradCAM"),
|
| 76 |
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
| 77 |
],
|
| 78 |
outputs = [
|