Spaces:
Sleeping
Sleeping
Commit
·
cebd76b
1
Parent(s):
275a5a2
Code optimization
Browse files
app.py
CHANGED
|
@@ -27,7 +27,8 @@ test_loader = dataset.get_test_data_loader(**dataloader_args)
|
|
| 27 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
| 28 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
def resize_image_pil(image, new_width, new_height):
|
| 33 |
|
|
@@ -86,20 +87,11 @@ def inference(input_img, is_grad_cam=True, transparency = 0.5, target_layer_numb
|
|
| 86 |
# Pick the top n predictions
|
| 87 |
top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions])
|
| 88 |
|
| 89 |
-
if
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
cache_dict["num_misclassified_images"] = num_misclassified_images
|
| 93 |
-
if is_misclassified_images:
|
| 94 |
-
# Get the misclassified data from test dataset
|
| 95 |
-
misclassified_data = get_misclassified_data(model, device, test_loader)
|
| 96 |
-
# Plot the misclassified data
|
| 97 |
-
misclassified_images = display_cifar_misclassified_data(misclassified_data, number_of_samples=num_misclassified_images)
|
| 98 |
-
cache_dict["misclassified_images"] = misclassified_images
|
| 99 |
-
else:
|
| 100 |
-
misclassified_images = None
|
| 101 |
else:
|
| 102 |
-
misclassified_images =
|
| 103 |
|
| 104 |
return classes[prediction[0].item()], visualization, top_n_confidences, misclassified_images
|
| 105 |
|
|
|
|
| 27 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
| 28 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
| 29 |
|
| 30 |
+
# Get the misclassified data from test dataset
|
| 31 |
+
misclassified_data = get_misclassified_data(model, device, test_loader)
|
| 32 |
|
| 33 |
def resize_image_pil(image, new_width, new_height):
|
| 34 |
|
|
|
|
| 87 |
# Pick the top n predictions
|
| 88 |
top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions])
|
| 89 |
|
| 90 |
+
if is_misclassified_images:
|
| 91 |
+
# Plot the misclassified data
|
| 92 |
+
misclassified_images = display_cifar_misclassified_data(misclassified_data, number_of_samples=num_misclassified_images)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
else:
|
| 94 |
+
misclassified_images = None
|
| 95 |
|
| 96 |
return classes[prediction[0].item()], visualization, top_n_confidences, misclassified_images
|
| 97 |
|
utils.py
CHANGED
|
@@ -51,6 +51,9 @@ def get_misclassified_data(model, device, test_loader):
|
|
| 51 |
with torch.no_grad():
|
| 52 |
# Extract images, labels in a batch
|
| 53 |
for data, target in test_loader:
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Migrate the data to the device
|
| 56 |
data, target = data.to(device), target.to(device)
|
|
|
|
| 51 |
with torch.no_grad():
|
| 52 |
# Extract images, labels in a batch
|
| 53 |
for data, target in test_loader:
|
| 54 |
+
|
| 55 |
+
if len(misclassified_data) > 40:
|
| 56 |
+
break
|
| 57 |
|
| 58 |
# Migrate the data to the device
|
| 59 |
data, target = data.to(device), target.to(device)
|