Spaces:
Sleeping
Sleeping
Commit
·
ffe5b98
1
Parent(s):
a534ad2
Added caching
Browse files
app.py
CHANGED
|
@@ -27,6 +27,8 @@ test_loader = dataset.get_test_data_loader(**dataloader_args)
|
|
| 27 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
| 28 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
| 29 |
|
|
|
|
|
|
|
| 30 |
def resize_image_pil(image, new_width, new_height):
|
| 31 |
|
| 32 |
# Convert to PIL image
|
|
@@ -84,13 +86,20 @@ def inference(input_img, is_grad_cam=True, transparency = 0.5, target_layer_numb
|
|
| 84 |
# Pick the top n predictions
|
| 85 |
top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions])
|
| 86 |
|
| 87 |
-
if is_missclassified_images
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
else:
|
| 93 |
-
missclassified_images =
|
| 94 |
|
| 95 |
return classes[prediction[0].item()], visualization, top_n_confidences, missclassified_images
|
| 96 |
|
|
|
|
| 27 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
| 28 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
| 29 |
|
| 30 |
+
cache_dict = {"missclassified_images": None, "is_missclassified_images": None, "num_missclassified_images": None}
|
| 31 |
+
|
| 32 |
def resize_image_pil(image, new_width, new_height):
|
| 33 |
|
| 34 |
# Convert to PIL image
|
|
|
|
| 86 |
# Pick the top n predictions
|
| 87 |
top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions])
|
| 88 |
|
| 89 |
+
if (is_missclassified_images != cache_dict["num_missclassified_images"] or
|
| 90 |
+
num_missclassified_images != cache_dict["num_missclassified_images"]):
|
| 91 |
+
cache_dict["num_missclassified_images"] = is_missclassified_images
|
| 92 |
+
cache_dict["num_missclassified_images"] = num_missclassified_images
|
| 93 |
+
if is_missclassified_images:
|
| 94 |
+
# Get the misclassified data from test dataset
|
| 95 |
+
misclassified_data = get_misclassified_data(model, device, test_loader)
|
| 96 |
+
# Plot the misclassified data
|
| 97 |
+
misclassified_images = display_cifar_misclassified_data(misclassified_data, number_of_samples=num_missclassified_images)
|
| 98 |
+
cache_dict["missclassified_images"] = misclassified_images
|
| 99 |
+
else:
|
| 100 |
+
missclassified_images = None
|
| 101 |
else:
|
| 102 |
+
missclassified_images = cache_dict["missclassified_images"]
|
| 103 |
|
| 104 |
return classes[prediction[0].item()], visualization, top_n_confidences, missclassified_images
|
| 105 |
|