import torch import dataset import albumentations from utils import get_misclassified_data from albumentations.pytorch import ToTensorV2 from visualize import display_cifar_misclassified_data from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from resnet import ResNet18 import gradio as gr cuda = torch.cuda.is_available() device = 'cuda' if cuda else 'cpu' model = ResNet18() model.load_state_dict(torch.load("model.pth", map_location=torch.device(device)), strict=False) # dataloader arguments - something you'll fetch these from cmdprmt dataloader_args = dict(shuffle=True, batch_size=128, num_workers=4, pin_memory=True) if cuda else dict(shuffle=True, batch_size=64) test_loader = dataset.get_test_data_loader(**dataloader_args) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Get the misclassified data from test dataset misclassified_data = get_misclassified_data(model, device, test_loader) def resize_image_pil(image, new_width, new_height): # Convert to PIL image img = Image.fromarray(np.array(image)) # Get original size width, height = img.size # Calculate scale width_scale = new_width / width height_scale = new_height / height scale = min(width_scale, height_scale) # Resize resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST) # Crop to exact size resized = resized.crop((0, 0, new_width, new_height)) return resized def inference(input_img, is_grad_cam=True, transparency = 0.5, target_layer_number = -1, top_predictions=3, is_misclassified_images=True, num_misclassified_images=10): input_img = resize_image_pil(input_img, 32, 32) input_img = np.array(input_img) org_img = input_img input_img = input_img.reshape((32, 32, 3)) transforms = albumentations.Compose( # Normalize [albumentations.Normalize([0.49139968, 0.48215841, 0.44653091], [0.24703223, 0.24348513, 0.26158784]), # Convert to tensor ToTensorV2()]) input_img = transforms(image = input_img)['image'] input_img = input_img input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) if is_grad_cam: target_layers = [model.layer2[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) else: visualization = None # Sort the confidences dictionary based on confidence values sorted_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True)) # Pick the top n predictions top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions]) if is_misclassified_images: # Plot the misclassified data misclassified_images = display_cifar_misclassified_data(misclassified_data, number_of_samples=num_misclassified_images) else: misclassified_images = None return classes[prediction[0].item()], visualization, top_n_confidences, misclassified_images title = "CIFAR10 trained on ResNet18 Model with GradCAM" description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" examples = [["cat.jpg", True, 0.5, -1, 3, True, 10], ["dog.jpg", True, 0.5, -1, 3, True, 10], ["bird.jpg", True, 0.5, -1, 3, True, 10], ["car.jpg", True, 0.5, -1, 3, True, 10], ["deer.jpg", True, 0.5, -1, 3, True, 10], ["frog.jpg", True, 0.5, -1, 3, True, 10], ["horse.jpg", True, 0.5, -1, 3, True, 10], ["plane.jpg", True, 0.5, -1, 3, True, 10], ["ship.jpg", True, 0.5, -1, 3, True, 10], ["truck.jpg", True, 0.5, -1, 3, True, 10]] demo = gr.Interface( inference, inputs = [ gr.Image(width=256, height=256, label="Input Image"), gr.Checkbox(label="Show GradCAM"), gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"), gr.Slider(2, 10, value=3, step=1, label="Number of Top Classes"), gr.Checkbox(label="Show Misclassified Images"), gr.Slider(5, 40, value=10, step=5, label="Number of Misclassified Images") ], outputs = [ "text", gr.Image(width=256, height=256, label="Output"), gr.Label(label="Top Classes"), gr.Plot(label="Misclassified Images") ], title = title, description = description, examples = examples, ) demo.launch()