""" ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 """ import os import torch import utils import torch.nn as nn import torch.nn.functional as F from torchmetrics import Accuracy from torchvision.datasets import CIFAR10 from pytorch_lightning import LightningModule from torch.utils.data import DataLoader, random_split class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(LightningModule): def __init__(self, block, num_blocks, num_classes=10, loss='cross_entropy', learning_rate=2e-4, momentum=0.9, optimizer="SGD", epochs=20): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) self.accuracy = Accuracy(task="multiclass", num_classes=num_classes) self.learning_rate = learning_rate self.optimizer = optimizer self.momentum = momentum self.loss = utils.get_criterion(loss) self.epochs = epochs def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def training_step(self, batch, batch_idx): x, y = batch loss = self.loss(self(x), y) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = self.loss(logits, y) preds = torch.argmax(logits, dim=1) self.accuracy(preds, y) # Calling self.log will surface up scalars for you in TensorBoard self.log("val_loss", loss, prog_bar=True) self.log("val_acc", self.accuracy, prog_bar=True) return loss def test_step(self, batch, batch_idx): # Here we just reuse the validation_step for testing return self.validation_step(batch, batch_idx) def configure_optimizers(self): optimizer = utils.get_optimizer(self, lr=self.learning_rate, momentum=self.momentum, optimizer_type="SGD") max_lr = utils.get_learning_rate(self, optimizer, self.loss, self.trainer.datamodule.train_dataloader()) scheduler = utils.get_OneCycleLR_scheduler(optimizer, max_lr=max_lr, epochs=self.epochs, steps_per_epoch=len(self.trainer.datamodule.train_dataloader()), max_at_epoch=5, anneal_strategy = 'linear', div_factor=10, final_div_factor=1) return [optimizer],[{"scheduler": scheduler, "interval": "step", "frequency": 1}] def ResNet18(loss='cross_entropy', learning_rate=2e-4, momentum=0.9, optimizer="SGD", epochs=20): return ResNet(BasicBlock, [2, 2, 2, 2], loss=loss, learning_rate=learning_rate, momentum=momentum, optimizer=optimizer, epochs=epochs) def ResNet34(loss='cross_entropy', learning_rate=2e-4, momentum=0.9, optimizer="SGD", epochs=20): return ResNet(BasicBlock, [3, 4, 6, 3], loss=loss, learning_rate=learning_rate, momentum=momentum, optimizer=optimizer, epochs=epochs)