Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import gradio as gr | |
import torch.nn.functional as F | |
from PIL import Image | |
from fastsam import FastSAM, FastSAMPrompt | |
device = 'cpu' | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
device = "mps" | |
model = FastSAM('./weights/FastSAM-x.pt') | |
model.to(device) | |
def inference(image, conf_thres, iou_thres,): | |
pred = model(image, device=device, retina_masks=True, imgsz=1024, conf=conf_thres, iou=iou_thres) | |
prompt_process = FastSAMPrompt(image, pred, device="cpu") | |
ann = prompt_process.everything_prompt() | |
prompt_process.plot(annotations=ann, output_path="./output.jpg", withContours=False, better_quality=False) | |
output = Image.open('./output.jpg') | |
output = np.array(output) | |
return output | |
title = "FAST-SAM Segment Anything" | |
description = "A simple Gradio interface to infer on FAST-SAM model" | |
examples = [["image_1.jpg", 0.25, 0.45], | |
["image_2.jpg", 0.25, 0.45], | |
["image_3.jpg", 0.25, 0.45], | |
["image_4.jpg", 0.25, 0.45], | |
["image_5.jpg", 0.25, 0.45], | |
["image_6.jpg", 0.25, 0.45], | |
["image_7.jpg", 0.25, 0.45], | |
["image_8.jpg", 0.25, 0.45], | |
["image_9.jpg", 0.25, 0.45], | |
["image_10.jpg", 0.25, 0.45]] | |
demo = gr.Interface(inference, | |
inputs = [gr.Image(width=320, height=320, label="Input Image"), | |
gr.Slider(0, 1, 0.25, label="Confidence Threshold"), | |
gr.Slider(0, 1, 0.45, label="IoU Thresold")], | |
outputs= [gr.Image(width=640, height=640, label="Output")], | |
title=title, | |
description=description, | |
examples=examples) | |
demo.launch() | |