GPT-2 / app.py
AkashDataScience's picture
First commit
22095bf
raw
history blame
3.45 kB
import torch
import tiktoken
import gradio as gr
import torch.nn.functional as F
from model import GPT, GPTConfig
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
ckpt = torch.load("gpt2.pt", map_location=torch.device(device))
config = GPTConfig(**ckpt['model_args'])
model = GPT(config)
state_dict = ckpt['model']
model.load_state_dict(state_dict)
model.to(device)
enc = tiktoken.get_encoding('gpt2')
def inference(input_text, num_return_sequences, max_length):
input_tokens = torch.tensor(enc.encode(input_text), dtype=torch.long)
input_tokens = input_tokens.unsqueeze(0).repeat(num_return_sequences, 1)
x = input_tokens.to('cuda')
while x.size(1) < max_length:
# forward the model to get the logits
with torch.no_grad():
logits = model(x)[0] # (B, T, vocab_size)
# take the logits at the last position
logits = logits[:, -1, :] # (B, vocab_size)
# get the probabilities
probs = F.softmax(logits, dim=-1)
# do top-k sampling of 50 (huggingface pipeline default)
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
# select a token from the top-k probabilities
# note: multinomial does not demand the input to sum to 1
ix = torch.multinomial(topk_probs, 1) # (B, 1)
# gather the corresponding indices
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
# append to the sequence
x = torch.cat((x, xcol), dim=1)
decode_list = []
# print the generated text
for i in range(num_return_sequences):
tokens = x[i, :max_length].tolist()
decoded = enc.decode(tokens)
decode_list.append(decoded)
output = "\n======\n".join(decode_list)
return output
title = "GPT-2 trained on Shakespeare Plays dataset"
description = "A simple Gradio interface to generate text from GPT-2 model trained on Shakespeare Plays"
examples = [["Please put on these earmuffs because I can't you hear.", 2, 20],
["Twin 4-month-olds slept in the shade of the palm tree while the mother tanned in the sun.", 2, 20],
["Happiness can be found in the depths of chocolate pudding.", 2, 20],
["Seek success, but always be prepared for random cats.", 2, 20],
["This made him feel like an old-style rootbeer float smells.", 2, 20],
["The view from the lighthouse excited even the most seasoned traveler.", 2, 20],
["I've always wanted to go to Tajikistan, but my cat would miss me.", 2, 20],
["He found rain fascinating yet unpleasant.", 2, 20],
["Plans for this weekend include turning wine into water.", 2, 20],
["Iron pyrite is the most foolish of all minerals.", 2, 20],
]
demo = gr.Interface(
inference,
inputs = [
gr.Textbox(label="Enter some text", type="text"),
gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Number of outputs"),
gr.Slider(minimum=10, maximum=30, step=1, value=20, label="Maximum lenght of a sequence")
],
outputs = [
gr.Textbox(label="Output", type="text")
],
title = title,
description = description,
examples = examples,
)