Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from pinecone import Pinecone | |
from langchain_chroma import Chroma | |
from langchain_core.prompts import PromptTemplate | |
from langchain_pinecone import PineconeVectorStore | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.vectorstores import LanceDB | |
from langchain_text_splitters import CharacterTextSplitter | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, GoogleGenerativeAI | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004") | |
gemini = GoogleGenerativeAI(model="models/gemini-2.0-flash") | |
prompt_template = """ | |
Context:\n {context}?\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) | |
chain = prompt | gemini | |
def inference(pdf_path, chunk_size, chunk_overlap): | |
raw_documents = PyPDFLoader(pdf_path).load() | |
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
documents = text_splitter.split_documents(raw_documents) | |
pc = Pinecone(api_key=os.environ["PINECONE_API_KEY"]) | |
index_name = "langchain-test-index" | |
index = pc.Index(host="https://langchain-test-index-la2n80y.svc.aped-4627-b74a.pinecone.io") | |
index.delete(delete_all=True) | |
chroma_db = Chroma.from_documents(documents, embeddings, persist_directory="./chroma_db") | |
faiss_db = FAISS.from_documents(documents, embeddings) | |
faiss_db.save_local("./faiss_db") | |
lance_db = LanceDB.from_documents(documents, embeddings, uri="./lance_db") | |
pinecone_db = PineconeVectorStore.from_documents(documents, index_name=index_name, | |
embedding=embeddings) | |
return "All embeddings are stored in vector database" | |
title = "PDF Chat" | |
description = "A simple Gradio interface to query PDFs and compare vector database" | |
examples = [["data/amazon-10-k-2024.pdf", 1000, 100], | |
["data/goog-10-k-2023.pdf", 1000, 100]] | |
with gr.Blocks(theme=gr.themes.Monochrome()) as demo: | |
gr.Markdown(f"# {title}\n{description}") | |
with gr.Row(): | |
with gr.Column(): | |
pdf = gr.UploadButton(file_types=[".pdf"]) | |
chunk_size = gr.Slider(0, 2000, 1000, 100, label="Size of Chunk") | |
chunk_overlap = gr.Slider(0, 1000, 100, 100, label="Size of Chunk Overlap") | |
with gr.Row(): | |
clear_btn = gr.ClearButton(components=[pdf, chunk_size, chunk_overlap]) | |
submit_btn = gr.Button("Store Embeddings", variant='primary') | |
with gr.Column(): | |
message = gr.Textbox(label="Status", type="text") | |
submit_btn.click(inference, inputs=[pdf, chunk_size, chunk_overlap], outputs=message) | |
demo.launch() | |