Spaces:
Sleeping
Sleeping
Commit
·
b2fe6e1
1
Parent(s):
82eb5b8
Modular code
Browse files
app.py
CHANGED
@@ -27,14 +27,18 @@ chain = prompt | gemini
|
|
27 |
|
28 |
index_name = "langchain-test-index"
|
29 |
|
30 |
-
def
|
31 |
raw_documents = []
|
32 |
for path in pdf_path:
|
33 |
raw_documents.extend(PyPDFLoader(path).load())
|
|
|
34 |
|
|
|
35 |
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
36 |
documents = text_splitter.split_documents(raw_documents)
|
|
|
37 |
|
|
|
38 |
pc = Pinecone(api_key=os.environ["PINECONE_API_KEY"])
|
39 |
|
40 |
index = pc.Index(host="https://langchain-test-index-la2n80y.svc.aped-4627-b74a.pinecone.io")
|
@@ -42,13 +46,53 @@ def store_embeddings(pdf_path, chunk_size, chunk_overlap):
|
|
42 |
if index.describe_index_stats()['total_vector_count'] > 0:
|
43 |
index.delete(delete_all=True)
|
44 |
|
|
|
45 |
chroma_db = Chroma.from_documents(documents, embeddings, persist_directory="./chroma_db")
|
|
|
|
|
46 |
faiss_db = FAISS.from_documents(documents, embeddings)
|
47 |
faiss_db.save_local("./faiss_db")
|
|
|
|
|
48 |
lance_db = LanceDB.from_documents(documents, embeddings, uri="./lance_db")
|
|
|
|
|
49 |
pinecone_db = PineconeVectorStore.from_documents(documents, index_name=index_name,
|
50 |
embedding=embeddings)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
return "All embeddings are stored in vector database"
|
53 |
|
54 |
title = "PDF Chat"
|
@@ -57,21 +101,17 @@ examples = [[["data/amazon-10-k-2024.pdf"], 1000, 100],
|
|
57 |
[["data/goog-10-k-2023.pdf"], 1000, 100]]
|
58 |
|
59 |
def inference(query):
|
60 |
-
chroma_db =
|
61 |
-
|
62 |
-
chroma_answer = chain.invoke({"context":chroma_docs, "question": query}, return_only_outputs=True)
|
63 |
|
64 |
-
faiss_db =
|
65 |
-
|
66 |
-
faiss_answer = chain.invoke({"context":faiss_docs, "question": query}, return_only_outputs=True)
|
67 |
|
68 |
-
lance_db =
|
69 |
-
|
70 |
-
lance_answer = chain.invoke({"context":lance_docs, "question": query}, return_only_outputs=True)
|
71 |
|
72 |
-
pinecone_db =
|
73 |
-
|
74 |
-
pinecoce_answer = chain.invoke({"context":pinecone_docs, "question": query}, return_only_outputs=True)
|
75 |
|
76 |
return chroma_answer, faiss_answer, lance_answer, pinecoce_answer
|
77 |
|
|
|
27 |
|
28 |
index_name = "langchain-test-index"
|
29 |
|
30 |
+
def extract_text_from_pdf(pdf_path):
|
31 |
raw_documents = []
|
32 |
for path in pdf_path:
|
33 |
raw_documents.extend(PyPDFLoader(path).load())
|
34 |
+
return raw_documents
|
35 |
|
36 |
+
def chunk_text(raw_documents):
|
37 |
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
38 |
documents = text_splitter.split_documents(raw_documents)
|
39 |
+
return documents
|
40 |
|
41 |
+
def delete_pinecone():
|
42 |
pc = Pinecone(api_key=os.environ["PINECONE_API_KEY"])
|
43 |
|
44 |
index = pc.Index(host="https://langchain-test-index-la2n80y.svc.aped-4627-b74a.pinecone.io")
|
|
|
46 |
if index.describe_index_stats()['total_vector_count'] > 0:
|
47 |
index.delete(delete_all=True)
|
48 |
|
49 |
+
def store_chroma_db(documents):
|
50 |
chroma_db = Chroma.from_documents(documents, embeddings, persist_directory="./chroma_db")
|
51 |
+
|
52 |
+
def store_faiss_db(documents):
|
53 |
faiss_db = FAISS.from_documents(documents, embeddings)
|
54 |
faiss_db.save_local("./faiss_db")
|
55 |
+
|
56 |
+
def store_lance_db(documents):
|
57 |
lance_db = LanceDB.from_documents(documents, embeddings, uri="./lance_db")
|
58 |
+
|
59 |
+
def store_pinecone_db(documents):
|
60 |
pinecone_db = PineconeVectorStore.from_documents(documents, index_name=index_name,
|
61 |
embedding=embeddings)
|
62 |
|
63 |
+
def load_chroma_db():
|
64 |
+
chroma_db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
65 |
+
return chroma_db
|
66 |
+
|
67 |
+
def load_faiss_db():
|
68 |
+
faiss_db = FAISS.load_local("./faiss_db", embeddings, allow_dangerous_deserialization=True)
|
69 |
+
return faiss_db
|
70 |
+
|
71 |
+
def load_lance_db():
|
72 |
+
lance_db = LanceDB(embedding=embeddings, uri="./lance_db")
|
73 |
+
return lance_db
|
74 |
+
|
75 |
+
def connect_pinecone_db():
|
76 |
+
pinecone_db = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
77 |
+
return pinecone_db
|
78 |
+
|
79 |
+
def invoke_chain(db, query):
|
80 |
+
docs = db.similarity_search(query)
|
81 |
+
answer = chain.invoke({"context":docs, "question": query}, return_only_outputs=True)
|
82 |
+
return answer
|
83 |
+
|
84 |
+
def store_embeddings(pdf_path, chunk_size, chunk_overlap):
|
85 |
+
raw_documents = extract_text_from_pdf(pdf_path)
|
86 |
+
|
87 |
+
documents = chunk_text(raw_documents)
|
88 |
+
|
89 |
+
delete_pinecone()
|
90 |
+
|
91 |
+
store_chroma_db(documents)
|
92 |
+
store_chroma_db(documents)
|
93 |
+
store_lance_db(documents)
|
94 |
+
store_pinecone_db(documents)
|
95 |
+
|
96 |
return "All embeddings are stored in vector database"
|
97 |
|
98 |
title = "PDF Chat"
|
|
|
101 |
[["data/goog-10-k-2023.pdf"], 1000, 100]]
|
102 |
|
103 |
def inference(query):
|
104 |
+
chroma_db = load_chroma_db()
|
105 |
+
chroma_answer = invoke_chain(chroma_db, query)
|
|
|
106 |
|
107 |
+
faiss_db = load_faiss_db()
|
108 |
+
faiss_answer = invoke_chain(faiss_db, query)
|
|
|
109 |
|
110 |
+
lance_db = load_lance_db()
|
111 |
+
lance_answer = invoke_chain(lance_db, query)
|
|
|
112 |
|
113 |
+
pinecone_db = connect_pinecone_db()
|
114 |
+
pinecoce_answer = invoke_chain(pinecone_db, query)
|
|
|
115 |
|
116 |
return chroma_answer, faiss_answer, lance_answer, pinecoce_answer
|
117 |
|