ReceiptRAG / app.py
AkashDataScience's picture
Switching from interface to blocks
2570fea
raw
history blame
2.36 kB
import os
import easyocr
import gradio as gr
from PIL import Image
from llama_index.core import Settings
from llama_index.llms.gemini import Gemini
from llama_index.core import Document, VectorStoreIndex
from llama_index.embeddings.gemini import GeminiEmbedding
reader = easyocr.Reader(['en'])
llm = Gemini(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/gemini-2.0-flash")
gemini_embedding_model = GeminiEmbedding(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/embedding-001")
# Set Global settings
Settings.llm = llm
Settings.embed_model = gemini_embedding_model
def inference(img_path, width_ths):
output = reader.readtext(img_path, detail=0, slope_ths=0.7, ycenter_ths=0.9,
height_ths=0.8, width_ths=width_ths, add_margin=0.2)
output = "\n".join(output)
# create a Document object from the extracted text
doc = Document(text = output)
# Create an index from the documents and save it to the disk.
index = VectorStoreIndex.from_documents([doc])
# save the index
index.storage_context.persist(persist_dir = "./receiptsembeddings")
return output
title = "Receipt RAG"
description = "A simple Gradio interface to query receipts using RAG"
examples = [["data/receipt_00000.JPG", 7.7],
["data/receipt_00001.jpg", 7.7]]
with gr.Blocks() as demo:
gr.Markdown(f"# {title}\n{description}")
image = gr.Image(width=320, height=320, label="Input Receipt")
width_ths = gr.Slider(0, 10, 7.7, 0.1, label="Width Threshold to merge bounding boxes")
ocr_out = gr.Textbox(label="OCR Output", type="text")
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton("Clear")
submit_btn.click(inference, inputs=[image, width_ths], outputs=ocr_out)
clear_btn.click(lambda: [None, 7.7], outputs=ocr_out)
examples_obj = gr.Examples(examples=examples, inputs=[image, width_ths])
# demo = gr.Interface(inference,
# inputs = [gr.Image(width=320, height=320, label="Input Receipt"),
# gr.Slider(0, 10, 7.7, 0.1, label="Width Threshold to merge bounding boxes")],
# outputs= [gr.Textbox(label="OCR Output", type="text")],
# title=title,
# description=description,
# examples=examples)
demo.launch()