ReceiptRAG / app.py
AkashDataScience's picture
Updated label
7413100
import os
import easyocr
import gradio as gr
from PIL import Image
from llama_index.core import Settings
from llama_index.llms.gemini import Gemini
from llama_index.core import Document, VectorStoreIndex
from llama_index.embeddings.gemini import GeminiEmbedding
from llama_index.core import load_index_from_storage, StorageContext
reader = easyocr.Reader(['en'])
llm = Gemini(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/gemini-2.0-flash")
gemini_embedding_model = GeminiEmbedding(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/embedding-001")
# Set Global settings
Settings.llm = llm
Settings.embed_model = gemini_embedding_model
def ocr_inference(img_path, width_ths):
output = reader.readtext(img_path, detail=0, slope_ths=0.7, ycenter_ths=0.9,
height_ths=0.8, width_ths=width_ths, add_margin=0.2)
output = "\n".join(output)
doc = Document(text = output)
index = VectorStoreIndex.from_documents([doc])
index.storage_context.persist(persist_dir = "./receiptsembeddings")
return output
def inference(question):
persist_dir = "./receiptsembeddings"
storage_context = StorageContext.from_defaults(persist_dir = persist_dir)
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine()
response = query_engine.query(question)
return response
title = "Receipt RAG"
description = "A simple Gradio interface to query receipts using RAG"
examples = [["data/receipt_00000.JPG", 7.7],
["data/receipt_00001.jpg", 7.7]]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {title}\n{description}")
with gr.Row():
with gr.Column():
image = gr.Image(width=320, height=320, label="Input Receipt")
width_ths = gr.Slider(0, 10, 7.7, 0.1, label="Width Threshold to Merge Bounding Boxes")
with gr.Row():
clear_btn = gr.ClearButton(components=[image, width_ths])
submit_btn = gr.Button("Submit", variant='primary')
with gr.Column():
ocr_out = gr.Textbox(label="OCR Output", type="text")
submit_btn.click(ocr_inference, inputs=[image, width_ths], outputs=ocr_out)
with gr.Row():
with gr.Column():
text = gr.Textbox(label="Question", type="text")
with gr.Row():
chat_clear_btn = gr.ClearButton(components=[text])
chat_submit_btn = gr.Button("Submit", variant='primary')
with gr.Column():
chat_out = gr.Textbox(label="Response", type="text")
chat_submit_btn.click(inference, inputs=[text], outputs=[chat_out])
examples_obj = gr.Examples(examples=examples, inputs=[image, width_ths])
demo.launch()