Spaces:
Sleeping
Sleeping
Commit
·
eb1ac6d
1
Parent(s):
dc7c4f3
Adding embeddings
Browse files
app.py
CHANGED
@@ -1,15 +1,36 @@
|
|
|
|
1 |
import easyocr
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
4 |
|
5 |
reader = easyocr.Reader(['en'])
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def inference(img_path, width_ths):
|
8 |
output = reader.readtext(img_path, detail=0, slope_ths=0.7, ycenter_ths=0.9,
|
9 |
height_ths=0.8, width_ths=width_ths, add_margin=0.2)
|
10 |
|
11 |
output = "\n".join(output)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
return output
|
14 |
|
15 |
title = "Receipt RAG"
|
|
|
1 |
+
import os
|
2 |
import easyocr
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
+
from llama_index.core import Settings
|
6 |
+
from llama_index.llms.gemini import Gemini
|
7 |
+
from llama_index.core import Document, VectorStoreIndex
|
8 |
+
from llama_index.embeddings.gemini import GeminiEmbedding
|
9 |
|
10 |
reader = easyocr.Reader(['en'])
|
11 |
|
12 |
+
llm = Gemini(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/gemini-2.0-flash")
|
13 |
+
gemini_embedding_model = GeminiEmbedding(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/embedding-001")
|
14 |
+
|
15 |
+
# Set Global settings
|
16 |
+
Settings.llm = llm
|
17 |
+
Settings.embed_model = gemini_embedding_model
|
18 |
+
|
19 |
def inference(img_path, width_ths):
|
20 |
output = reader.readtext(img_path, detail=0, slope_ths=0.7, ycenter_ths=0.9,
|
21 |
height_ths=0.8, width_ths=width_ths, add_margin=0.2)
|
22 |
|
23 |
output = "\n".join(output)
|
24 |
|
25 |
+
# create a Document object from the extracted text
|
26 |
+
doc = Document(text = output)
|
27 |
+
|
28 |
+
# Create an index from the documents and save it to the disk.
|
29 |
+
index = VectorStoreIndex.from_documents([doc])
|
30 |
+
|
31 |
+
# save the index
|
32 |
+
index.storage_context.persist(persist_dir = "./receiptsembeddings")
|
33 |
+
|
34 |
return output
|
35 |
|
36 |
title = "Receipt RAG"
|