Commit
·
7f3baaa
1
Parent(s):
2809d2c
First commit
Browse files- app.py +197 -0
- concept-art.bin +3 -0
- doose-s-realistic-art-style.bin +3 -0
- line-art.bin +3 -0
- requirements.txt +88 -0
- rickyart.bin +3 -0
- tony-diterlizzi-s-planescape-art.bin +3 -0
app.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from tqdm import tqdm
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms as tfms
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
8 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
9 |
+
|
10 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
11 |
+
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
12 |
+
|
13 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
14 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
|
15 |
+
|
16 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
17 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
18 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
19 |
+
|
20 |
+
# The UNet model for generating the latents.
|
21 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
22 |
+
|
23 |
+
# The noise scheduler
|
24 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
25 |
+
|
26 |
+
style_token_dict = {'Concept':'<concept-art>', 'Realistic':'<doose-realistic>', 'Line':'<line-art>',
|
27 |
+
'Ricky':'<RickyArt>', 'Plane Scape':'<tony-diterlizzi-planescape>'}
|
28 |
+
|
29 |
+
# To the GPU we go!
|
30 |
+
vae = vae.to(torch_device)
|
31 |
+
text_encoder = text_encoder.to(torch_device)
|
32 |
+
unet = unet.to(torch_device)
|
33 |
+
|
34 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
35 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
36 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
37 |
+
position_embeddings = pos_emb_layer(position_ids)
|
38 |
+
|
39 |
+
concept_art_embed = torch.load('concept-art.bin')
|
40 |
+
doose_s_realistic_art_style_embed = torch.load('doose-s-realistic-art-style.bin')
|
41 |
+
line_art_embed = torch.load('line-art.bin')
|
42 |
+
rickyart_embed = torch.load('rickyart.bin')
|
43 |
+
tony_diterlizzi_s_planescape_art_embed = torch.load('tony-diterlizzi-s-planescape-art.bin')
|
44 |
+
|
45 |
+
tokenizer.add_tokens(['<concept-art>', '<doose-realistic>', '<line-art>', '<RickyArt>', '<tony-diterlizzi-planescape>'])
|
46 |
+
|
47 |
+
token_emb_layer_with_art = torch.nn.Embedding(49413, 768)
|
48 |
+
token_emb_layer_with_art.load_state_dict({'weight': torch.cat((token_emb_layer.state_dict()['weight'],
|
49 |
+
concept_art_embed['<concept-art>'].unsqueeze(0).to(torch_device),
|
50 |
+
doose_s_realistic_art_style_embed['<doose-realistic>'].unsqueeze(0).to(torch_device),
|
51 |
+
line_art_embed['<line-art>'].unsqueeze(0).to(torch_device),
|
52 |
+
rickyart_embed['<RickyArt>'].unsqueeze(0).to(torch_device),
|
53 |
+
tony_diterlizzi_s_planescape_art_embed['<tony-diterlizzi-planescape>'].unsqueeze(0).to(torch_device)))})
|
54 |
+
token_emb_layer_with_art = token_emb_layer_with_art.to(torch_device)
|
55 |
+
|
56 |
+
def set_timesteps(scheduler, num_inference_steps):
|
57 |
+
scheduler.set_timesteps(num_inference_steps)
|
58 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
59 |
+
|
60 |
+
def pil_to_latent(input_im):
|
61 |
+
with torch.no_grad():
|
62 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
63 |
+
return 0.18215 * latent.latent_dist.sample()
|
64 |
+
|
65 |
+
def latents_to_pil(latents):
|
66 |
+
latents = (1 / 0.18215) * latents
|
67 |
+
with torch.no_grad():
|
68 |
+
image = vae.decode(latents).sample
|
69 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
70 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
71 |
+
images = (image * 255).round().astype("uint8")
|
72 |
+
pil_images = [Image.fromarray(image) for image in images]
|
73 |
+
return pil_images
|
74 |
+
|
75 |
+
def build_causal_attention_mask(bsz, seq_len, dtype):
|
76 |
+
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
77 |
+
mask.fill_(torch.tensor(torch.finfo(dtype).min)) # fill with large negative number (acts like -inf)
|
78 |
+
mask = mask.triu_(1) # zero out the lower diagonal to enforce causality
|
79 |
+
return mask.unsqueeze(1) # add a batch dimension
|
80 |
+
|
81 |
+
def get_output_embeds(input_embeddings):
|
82 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
83 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
84 |
+
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
85 |
+
|
86 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
87 |
+
# so that it doesn't just return the pooled final predictions:
|
88 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
89 |
+
inputs_embeds=input_embeddings,
|
90 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
91 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
92 |
+
output_attentions=None,
|
93 |
+
output_hidden_states=True, # We want the output embs not the final output
|
94 |
+
return_dict=None,
|
95 |
+
)
|
96 |
+
|
97 |
+
# We're interested in the output hidden state only
|
98 |
+
output = encoder_outputs[0]
|
99 |
+
|
100 |
+
# There is a final layer norm we need to pass these through
|
101 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
102 |
+
|
103 |
+
# And now they're ready!
|
104 |
+
return output
|
105 |
+
|
106 |
+
def generate_with_embs(num_inference_steps, guidance_scale, seed, text_input, text_embeddings):
|
107 |
+
height = 512 # default height of Stable Diffusion
|
108 |
+
width = 512 # default width of Stable Diffusion
|
109 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
110 |
+
batch_size = 1
|
111 |
+
|
112 |
+
max_length = text_input.input_ids.shape[-1]
|
113 |
+
uncond_input = tokenizer(
|
114 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
115 |
+
)
|
116 |
+
with torch.no_grad():
|
117 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
118 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
119 |
+
|
120 |
+
# Prep Scheduler
|
121 |
+
set_timesteps(scheduler, num_inference_steps)
|
122 |
+
|
123 |
+
# Prep latents
|
124 |
+
latents = torch.randn(
|
125 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
126 |
+
generator=generator,
|
127 |
+
)
|
128 |
+
latents = latents.to(torch_device)
|
129 |
+
latents = latents * scheduler.init_noise_sigma
|
130 |
+
|
131 |
+
# Loop
|
132 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
133 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
134 |
+
latent_model_input = torch.cat([latents] * 2)
|
135 |
+
sigma = scheduler.sigmas[i]
|
136 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
137 |
+
|
138 |
+
# predict the noise residual
|
139 |
+
with torch.no_grad():
|
140 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
141 |
+
|
142 |
+
# perform guidance
|
143 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
144 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
145 |
+
|
146 |
+
# compute the previous noisy sample x_t -> x_t-1
|
147 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
148 |
+
|
149 |
+
return latents_to_pil(latents)[0]
|
150 |
+
|
151 |
+
def inference(text, style, inference_step, guidance_scale, seed):
|
152 |
+
prompt = text + " the style of " + style_token_dict[style]
|
153 |
+
|
154 |
+
# Tokenize
|
155 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
156 |
+
input_ids = text_input.input_ids.to(torch_device)
|
157 |
+
|
158 |
+
# Get token embeddings
|
159 |
+
token_embeddings = token_emb_layer_with_art(input_ids)
|
160 |
+
|
161 |
+
# Combine with pos embs
|
162 |
+
input_embeddings = token_embeddings + position_embeddings
|
163 |
+
|
164 |
+
# Feed through to get final output embs
|
165 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
166 |
+
|
167 |
+
# And generate an image with this:
|
168 |
+
image = generate_with_embs(inference_step, guidance_scale, seed, text_input, modified_output_embeddings)
|
169 |
+
|
170 |
+
return image
|
171 |
+
|
172 |
+
title = "Stable Diffusion with Textual Inversion"
|
173 |
+
description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art style"
|
174 |
+
examples = [["A sweet potato farm", 'Concept', 30, 0.5, 1],
|
175 |
+
["Sky full of cotton candy", 'Realistic', 30, 1.5, 2],
|
176 |
+
["Coffin full of jello", 'Line', 30, 2.5, 3],
|
177 |
+
["Water skiing on a lake", 'Ricky', 30, 3.5, 4],
|
178 |
+
["Super slippery noodles", 'Plane Scape', 30, 4.5, 5],
|
179 |
+
["Beautiful sunset", 'Concept', 30, 5.5, 6],
|
180 |
+
["A glittering gem", 'Realistic', 30, 6.5, 7],
|
181 |
+
["River rafting", 'Line', 30, 7.5, 8],
|
182 |
+
["A green tea", 'Ricky', 30, 8.5, 9],
|
183 |
+
["Three sphered rocks", 'Plane Scape', 30, 9.5, 10]]
|
184 |
+
|
185 |
+
demo = gr.Interface(inference,
|
186 |
+
inputs = [gr.Textbox(label="Prompt", type="text"),
|
187 |
+
gr.Dropdown(label="Style", choices=['Concept', 'Realistic', 'Line',
|
188 |
+
'Ricky', 'Plane Scape'], value="Concept"),
|
189 |
+
gr.Slider(10, 50, 30, step = 10, label="Inference steps"),
|
190 |
+
gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"),
|
191 |
+
gr.Slider(0, 10000, 1, step = 1, label="Seed")],
|
192 |
+
outputs= [gr.Image(width=320, height=320, label="Output SAM")],
|
193 |
+
title=title,
|
194 |
+
description=description,
|
195 |
+
examples=examples)
|
196 |
+
|
197 |
+
demo.launch()
|
concept-art.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd046d1c90c6e58769033de23adadf936e873597b11fed16a07dde7750bd348c
|
3 |
+
size 3819
|
doose-s-realistic-art-style.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a2cfe14214eb4055475b3445420796adfe6aa1bfbc9e1fb7dc62dedd5d71808
|
3 |
+
size 3819
|
line-art.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0528436ec2228c659e0cf1316e713345bc97a3d88294f1a2987a3505d220e770
|
3 |
+
size 3819
|
requirements.txt
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.3.0
|
3 |
+
annotated-types==0.7.0
|
4 |
+
anyio==4.4.0
|
5 |
+
attrs==23.2.0
|
6 |
+
certifi==2024.6.2
|
7 |
+
charset-normalizer==3.3.2
|
8 |
+
click==8.1.7
|
9 |
+
colorama==0.4.6
|
10 |
+
contourpy==1.2.1
|
11 |
+
cycler==0.12.1
|
12 |
+
diffusers==0.29.2
|
13 |
+
dnspython==2.6.1
|
14 |
+
email_validator==2.1.1
|
15 |
+
fastapi==0.111.0
|
16 |
+
fastapi-cli==0.0.4
|
17 |
+
ffmpy==0.3.2
|
18 |
+
filelock==3.13.1
|
19 |
+
fonttools==4.53.0
|
20 |
+
fsspec==2024.2.0
|
21 |
+
ftfy==6.2.0
|
22 |
+
gradio==4.36.1
|
23 |
+
gradio_client==1.0.1
|
24 |
+
h11==0.14.0
|
25 |
+
httpcore==1.0.5
|
26 |
+
httptools==0.6.1
|
27 |
+
httpx==0.27.0
|
28 |
+
huggingface-hub==0.23.4
|
29 |
+
idna==3.7
|
30 |
+
importlib_resources==6.4.0
|
31 |
+
intel-openmp==2021.4.0
|
32 |
+
Jinja2==3.1.3
|
33 |
+
jsonschema==4.22.0
|
34 |
+
jsonschema-specifications==2023.12.1
|
35 |
+
kiwisolver==1.4.5
|
36 |
+
markdown-it-py==3.0.0
|
37 |
+
MarkupSafe==2.1.5
|
38 |
+
matplotlib==3.9.0
|
39 |
+
mdurl==0.1.2
|
40 |
+
mkl==2021.4.0
|
41 |
+
mpmath==1.3.0
|
42 |
+
networkx==3.2.1
|
43 |
+
numpy==1.26.3
|
44 |
+
opencv-python==4.10.0.84
|
45 |
+
orjson==3.10.5
|
46 |
+
packaging==24.1
|
47 |
+
pandas==2.2.2
|
48 |
+
pillow==10.2.0
|
49 |
+
pydantic==2.7.4
|
50 |
+
pydantic_core==2.18.4
|
51 |
+
pydub==0.25.1
|
52 |
+
Pygments==2.18.0
|
53 |
+
pyparsing==3.1.2
|
54 |
+
python-dateutil==2.9.0.post0
|
55 |
+
python-dotenv==1.0.1
|
56 |
+
python-multipart==0.0.9
|
57 |
+
pytz==2024.1
|
58 |
+
PyYAML==6.0.1
|
59 |
+
referencing==0.35.1
|
60 |
+
regex==2024.5.15
|
61 |
+
requests==2.32.3
|
62 |
+
rich==13.7.1
|
63 |
+
rpds-py==0.18.1
|
64 |
+
ruff==0.4.9
|
65 |
+
scipy==1.14.0
|
66 |
+
semantic-version==2.10.0
|
67 |
+
shellingham==1.5.4
|
68 |
+
six==1.16.0
|
69 |
+
sniffio==1.3.1
|
70 |
+
starlette==0.37.2
|
71 |
+
sympy==1.12
|
72 |
+
tbb==2021.11.0
|
73 |
+
tiktoken==0.7.0
|
74 |
+
tomlkit==0.12.0
|
75 |
+
toolz==0.12.1
|
76 |
+
torch==2.3.1
|
77 |
+
torchaudio==2.3.1
|
78 |
+
torchvision==0.18.1
|
79 |
+
tqdm==4.66.4
|
80 |
+
transformers==4.43.3
|
81 |
+
typer==0.12.3
|
82 |
+
typing_extensions==4.9.0
|
83 |
+
tzdata==2024.1
|
84 |
+
ujson==5.10.0
|
85 |
+
urllib3==2.2.1
|
86 |
+
uvicorn==0.30.1
|
87 |
+
watchfiles==0.22.0
|
88 |
+
websockets==11.0.3
|
rickyart.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0e2263b57fb66b48c9b09bee7b01b5fd8d708a6c52754265fd35052424d82ee
|
3 |
+
size 3819
|
tony-diterlizzi-s-planescape-art.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:718333440c0986d401954d82acd2b2e0e8222f6b4d8587d4332c16bc9191cba4
|
3 |
+
size 3819
|