AkashDataScience commited on
Commit
a67c790
·
1 Parent(s): 47017f5

Adding guidance

Browse files
Files changed (1) hide show
  1. app.py +121 -11
app.py CHANGED
@@ -3,6 +3,7 @@ import torch
3
  import gradio as gr
4
  from tqdm import tqdm
5
  from PIL import Image
 
6
  from torchvision import transforms as tfms
7
  from transformers import CLIPTextModel, CLIPTokenizer, logging
8
  from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
@@ -53,6 +54,8 @@ token_emb_layer_with_art.load_state_dict({'weight': torch.cat((token_emb_layer.s
53
  tony_diterlizzi_s_planescape_art_embed['<tony-diterlizzi-planescape>'].unsqueeze(0).to(torch_device)))})
54
  token_emb_layer_with_art = token_emb_layer_with_art.to(torch_device)
55
 
 
 
56
  def set_timesteps(scheduler, num_inference_steps):
57
  scheduler.set_timesteps(num_inference_steps)
58
  scheduler.timesteps = scheduler.timesteps.to(torch.float32)
@@ -148,7 +151,106 @@ def generate_with_embs(num_inference_steps, guidance_scale, seed, text_input, te
148
 
149
  return latents_to_pil(latents)[0]
150
 
151
- def inference(text, style, inference_step, guidance_scale, seed):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  prompt = text + " the style of " + style_token_dict[style]
153
 
154
  # Tokenize
@@ -165,26 +267,34 @@ def inference(text, style, inference_step, guidance_scale, seed):
165
  modified_output_embeddings = get_output_embeds(input_embeddings)
166
 
167
  # And generate an image with this:
168
- image = generate_with_embs(inference_step, guidance_scale, seed, text_input, modified_output_embeddings)
 
 
 
 
169
 
170
- return image
171
 
172
  title = "Stable Diffusion with Textual Inversion"
173
  description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art style"
174
- examples = [["A sweet potato farm", 'Concept', 10, 1.5, 1],
175
- ["Sky full of cotton candy", 'Realistic', 10, 3.5, 2],
176
- ["Kittens in the bathtub", 'Line', 10, 5.5, 3],
177
- ["Water skiing on a lake", 'Ricky', 10, 7.5, 4],
178
- ["Miniature pet elephant", 'Plane Scape', 10, 9.5, 5]]
179
 
180
  demo = gr.Interface(inference,
181
  inputs = [gr.Textbox(label="Prompt", type="text"),
182
  gr.Dropdown(label="Style", choices=['Concept', 'Realistic', 'Line',
183
  'Ricky', 'Plane Scape'], value="Concept"),
184
- gr.Slider(10, 30, 10, step = 10, label="Inference steps"),
185
  gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"),
186
- gr.Slider(0, 10000, 1, step = 1, label="Seed")],
187
- outputs= [gr.Image(width=320, height=320, label="Generated art")],
 
 
 
 
188
  title=title,
189
  description=description,
190
  examples=examples)
 
3
  import gradio as gr
4
  from tqdm import tqdm
5
  from PIL import Image
6
+ import torch.nn.functional as F
7
  from torchvision import transforms as tfms
8
  from transformers import CLIPTextModel, CLIPTokenizer, logging
9
  from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
 
54
  tony_diterlizzi_s_planescape_art_embed['<tony-diterlizzi-planescape>'].unsqueeze(0).to(torch_device)))})
55
  token_emb_layer_with_art = token_emb_layer_with_art.to(torch_device)
56
 
57
+ grayscale_transformer = tfms.Grayscale(num_output_channels=3)
58
+
59
  def set_timesteps(scheduler, num_inference_steps):
60
  scheduler.set_timesteps(num_inference_steps)
61
  scheduler.timesteps = scheduler.timesteps.to(torch.float32)
 
151
 
152
  return latents_to_pil(latents)[0]
153
 
154
+ def guide_loss(images, loss_type='grayscale'):
155
+ # grayscale loss
156
+ if loss_type == 'grayscale':
157
+ transformed_imgs = grayscale_transformer(images)
158
+ error = torch.abs(transformed_imgs - images).mean()
159
+
160
+ # brightness loss
161
+ elif loss_type == 'bright':
162
+ transformed_imgs = tfms.functional.adjust_brightness(images, brightness_factor=3)
163
+ error = torch.abs(transformed_imgs - images).mean()
164
+
165
+ # contrast loss
166
+ elif loss_type == 'contrast':
167
+ transformed_imgs = tfms.functional.adjust_contrast(images, contrast_factor=10)
168
+ error = torch.abs(transformed_imgs - images).mean()
169
+
170
+ # symmetry loss - Flip the image along the width
171
+ elif loss_type == "symmetry":
172
+ flipped_image = torch.flip(images, [3])
173
+ error = F.mse_loss(images, flipped_image)
174
+
175
+ # saturation loss
176
+ elif loss_type == 'saturation':
177
+ transformed_imgs = tfms.functional.adjust_saturation(images,saturation_factor = 10)
178
+ error = torch.abs(transformed_imgs - images).mean()
179
+
180
+ return error
181
+
182
+ def generate_with_guide_loss(num_inference_steps, guidance_scale, seed, text_input, text_embeddings, loss_type, loss_scale):
183
+ height = 512 # default height of Stable Diffusion
184
+ width = 512 # default width of Stable Diffusion
185
+ generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
186
+ batch_size = 1
187
+
188
+ # And the uncond. input as before:
189
+ max_length = text_input.input_ids.shape[-1]
190
+ uncond_input = tokenizer(
191
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
192
+ )
193
+ with torch.no_grad():
194
+ uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
195
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
196
+
197
+ # Prep Scheduler
198
+ set_timesteps(scheduler, num_inference_steps)
199
+
200
+ # Prep latents
201
+ latents = torch.randn(
202
+ (batch_size, unet.in_channels, height // 8, width // 8),
203
+ generator=generator,
204
+ )
205
+ latents = latents.to(torch_device)
206
+ latents = latents * scheduler.init_noise_sigma
207
+
208
+ # Loop
209
+ for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
210
+ # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
211
+ latent_model_input = torch.cat([latents] * 2)
212
+ sigma = scheduler.sigmas[i]
213
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
214
+
215
+ # predict the noise residual
216
+ with torch.no_grad():
217
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
218
+
219
+ # perform CFG
220
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
221
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
222
+
223
+ #### ADDITIONAL GUIDANCE ###
224
+ if i%5 == 0:
225
+ # Requires grad on the latents
226
+ latents = latents.detach().requires_grad_()
227
+
228
+ # Get the predicted x0:
229
+ latents_x0 = latents - sigma * noise_pred
230
+ # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
231
+
232
+ # Decode to image space
233
+ denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
234
+
235
+ # Calculate loss
236
+ loss = guide_loss(denoised_images, loss_type) * loss_scale
237
+
238
+ # Occasionally print it out
239
+ if i%10==0:
240
+ print(i, 'loss:', loss.item())
241
+
242
+ # Get gradient
243
+ cond_grad = torch.autograd.grad(loss, latents)[0]
244
+
245
+ # Modify the latents based on this gradient
246
+ latents = latents.detach() - cond_grad * sigma**2
247
+
248
+ # Now step with scheduler
249
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
250
+
251
+ return latents_to_pil(latents)[0]
252
+
253
+ def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
254
  prompt = text + " the style of " + style_token_dict[style]
255
 
256
  # Tokenize
 
267
  modified_output_embeddings = get_output_embeds(input_embeddings)
268
 
269
  # And generate an image with this:
270
+ image_embs = generate_with_embs(inference_step, guidance_scale, seed, text_input, modified_output_embeddings)
271
+
272
+ # Generate an image with guidance
273
+ image_guide = generate_with_guide_loss(inference_step, guidance_scale, seed, text_input,
274
+ modified_output_embeddings, guidance_method, loss_scale)
275
 
276
+ return image_embs, image_guide
277
 
278
  title = "Stable Diffusion with Textual Inversion"
279
  description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art style"
280
+ examples = [["A sweet potato farm", 'Concept', 10, 1.5, 1, 'Grayscale', 100],
281
+ ["Sky full of cotton candy", 'Realistic', 10, 3.5, 2, 'Bright', 200],
282
+ ["Kittens in the bathtub", 'Line', 10, 5.5, 3, 'Contrast', 300],
283
+ ["Water skiing on a lake", 'Ricky', 10, 7.5, 4, 'Symmetry', 400],
284
+ ["Miniature pet elephant", 'Plane Scape', 10, 9.5, 5, 'Saturation', 500]]
285
 
286
  demo = gr.Interface(inference,
287
  inputs = [gr.Textbox(label="Prompt", type="text"),
288
  gr.Dropdown(label="Style", choices=['Concept', 'Realistic', 'Line',
289
  'Ricky', 'Plane Scape'], value="Concept"),
290
+ gr.Slider(10, 30, 10, step = 5, label="Inference steps"),
291
  gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"),
292
+ gr.Slider(0, 10000, 1, step = 1, label="Seed"),
293
+ gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast',
294
+ 'Symmetry', 'Saturation'], value="Concept"),
295
+ gr.Slider(100, 10000, 100, step = 1, label="Loss scale")],
296
+ outputs= [gr.Image(width=320, height=320, label="Generated art"),
297
+ gr.Image(width=320, height=320, label="Generated art with guidance")],
298
  title=title,
299
  description=description,
300
  examples=examples)