import torch import random import gradio as gr from language_bpe import BPETokenizer tokenizer = BPETokenizer() tokenizer.load('models/english_5000.model') def inference(input_text): encoding = tokenizer.encode_ordinary(input_text) sentence = [tokenizer.decode([x]) for x in encoding] color_sentence = [] color_encoding = [] for word, encode in zip(sentence, encoding): color_sentence.append((word, str(encode))) color_encoding.append((encode, str(encode))) return len(encoding), color_sentence, color_encoding title = "Bilingual Tokenizer" description = "A simple Gradio interface to see tokenization of Hindi and English(Hinglish) text" examples = [["He walked into the basement with the horror movie from the night before playing in his head."], ["Henry couldn't decide if he was an auto mechanic or a priest."], ["Poison ivy grew through the fence they said was impenetrable."], ] demo = gr.Interface( inference, inputs = [ gr.Textbox(label="Enter any sentence in Hindi, English or both language", type="text"), ], outputs = [ gr.Label(label="Token count"), gr.HighlightedText(label="Sentence", show_inline_category=False), gr.HighlightedText(label="Encoding", tshow_inline_category=False) ], title = title, description = description, examples = examples, ) demo.launch()