import torch import torch.nn as nn import torch.nn.functional as F n_embd = 384 block_size = 256 dropout = 0.1 n_head = 8 n_layer = 6 # read text file with open('input.txt', 'r', encoding='utf-8') as f: text = f.read() # collect all the unique characters that occur in this text chars = sorted(list(set(text))) vocab_size = len(chars) cuda = torch.cuda.is_available() device = 'cuda' if cuda else 'cpu' class Head(nn.Module): """ one head of self-attention""" def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer('trill', torch.tril(torch.ones(block_size, block_size))) self.dropout = nn.Dropout(dropout) def forward(self, x): B,T,C = x.shape k = self.key(x) q = self.query(x) # compute attention scores ("affinities") wei = q @ k.transpose(-2, -1) * C**-0.5 wei = wei.masked_fill(self.trill[:T, :T] == 0, float('-inf')) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) # perform the weighted aggregation of the values v = self.value(x) out = wei @ v return out class MultiHeadAttention(nn.Module): """ multiple heads of self-attention in parallel """ def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(n_embd, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedForward(nn.Module): """ a simple linear layer followed by a non-linearity """ def __init__(self, n_embd): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Block(nn.Module): """ Transformer block: communication followed by computation""" def __init__(self, n_embd, n_head) -> None: super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention(n_head, head_size) self.ffwd = FeedForward(n_embd) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return (x) class BigramLanguageModel(nn.Module): def __init__(self): super().__init__() # each token directly reads off the logits for the next token from a lookup table self.token_embedding_table = nn.Embedding(vocab_size, n_embd) self.position_embedding_table = nn.Embedding(block_size, n_embd) # self.sa_head = MultiHeadAttention(4, n_embd//4) # self.ffwd = FeedForward(n_embd) # self.blocks = nn.Sequential( # Block(n_embd, n_head=4), # Block(n_embd, n_head=4), # Block(n_embd, n_head=4), # nn.LayerNorm(n_embd) # ) self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range (n_layer)]) self.ln_f = nn.LayerNorm(n_embd) self.lm_head = nn.Linear(n_embd, vocab_size) def forward(self, idx, targets=None): B, T = idx.shape # idx and targets are both (B,T) tensor of integers tok_emb = self.token_embedding_table(idx) # (B,T,C) pos_emb = self.position_embedding_table(torch.arange(T, device=device)) x = tok_emb + pos_emb # x = self.sa_head(x) # x = self.ffwd(x) x = self.blocks(x) x = self.ln_f(x) logits = self.lm_head(x) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): idx_cond = idx[:, -block_size:] # get the predictions logits, loss = self(idx_cond) # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=-1) # (B, C) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx