Akbartus commited on
Commit
b054db6
·
1 Parent(s): 04e5ce6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -5,7 +5,7 @@ from PIL import Image
5
  torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/06/15/01/11/soccer-1457988_1280.jpg', 'soccer.jpg')
6
  torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/11/21/14/31/vw-bus-1845719_1280.jpg', 'bus.jpg')
7
  # Model
8
- model = torch.hub.load('ultralytics/yolov5', 'yolov5') # or yolov3-spp, yolov3-tiny, custom
9
  def yolo(im, size=1920):
10
  g = (size / max(im.size)) # gain
11
  im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
@@ -14,7 +14,7 @@ def yolo(im, size=1920):
14
  return Image.fromarray(results.imgs[0])
15
  inputs = gr.inputs.Image(type='pil', label="Original Image")
16
  outputs = gr.outputs.Image(type="pil", label="Output Image")
17
- title = "YOLOv3"
18
  description = "YOLOv3 Gradio demo for object detection. Upload an image or click an example image to use."
19
  article = "<p style='text-align: center'>YOLOv3 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov3' target='_blank'>Source code</a> |<a href='https://apps.apple.com/app/id1452689527' target='_blank'>iOS App</a></p>"
20
  examples = [['soccer.jpg'], ['bus.jpg']]
 
5
  torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/06/15/01/11/soccer-1457988_1280.jpg', 'soccer.jpg')
6
  torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/11/21/14/31/vw-bus-1845719_1280.jpg', 'bus.jpg')
7
  # Model
8
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'customModel/model.pt')
9
  def yolo(im, size=1920):
10
  g = (size / max(im.size)) # gain
11
  im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
 
14
  return Image.fromarray(results.imgs[0])
15
  inputs = gr.inputs.Image(type='pil', label="Original Image")
16
  outputs = gr.outputs.Image(type="pil", label="Output Image")
17
+ title = "Custom YOLOv5"
18
  description = "YOLOv3 Gradio demo for object detection. Upload an image or click an example image to use."
19
  article = "<p style='text-align: center'>YOLOv3 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov3' target='_blank'>Source code</a> |<a href='https://apps.apple.com/app/id1452689527' target='_blank'>iOS App</a></p>"
20
  examples = [['soccer.jpg'], ['bus.jpg']]