Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
from PIL import Image
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
results = model(im)
|
24 |
-
numpy_image = results.render()[0]
|
25 |
-
output_image = Image.fromarray(numpy_image)
|
26 |
-
|
27 |
-
return output_image
|
28 |
-
|
29 |
-
title = "YOLOv5 - Auction sale catalogues layout analysis"
|
30 |
-
|
31 |
-
description = "<p style='text-align: center'>YOLOv5 Gradio demo for auction sales catalogues layout analysis. Detecting titles and catalogues entries.</p>"
|
32 |
-
|
33 |
-
article = "<p style='text-align: center'>YOLOv5 source code : <a href='https://github.com/ultralytics/yolov5'>Source code</a> | <a href='https://pytorch.org/hub/ultralytics_yolov5'>PyTorch Hub</a></p>"
|
34 |
-
|
35 |
-
|
36 |
-
demo=gr.Interface(fn=predict,
|
37 |
-
inputs=[gr.Image(type="pil", label="document image"), gr.Slider(maximum=1, step=0.01, value=0.50)],
|
38 |
-
outputs=gr.Image(type="pil", label="annotated document").style(height=700),
|
39 |
-
title=title,
|
40 |
-
description=description,
|
41 |
-
article=article,
|
42 |
-
theme="huggingface")
|
43 |
-
|
44 |
-
|
45 |
-
if __name__ == "__main__":
|
46 |
-
demo.launch(debug=True)
|
47 |
-
|
48 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from PIL import Image
|
4 |
+
# Images
|
5 |
+
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/06/15/01/11/soccer-1457988_1280.jpg', 'soccer.jpg')
|
6 |
+
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/11/21/14/31/vw-bus-1845719_1280.jpg', 'bus.jpg')
|
7 |
+
# Model
|
8 |
+
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
|
9 |
+
def yolo(im, size=1920):
|
10 |
+
g = (size / max(im.size)) # gain
|
11 |
+
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
|
12 |
+
results = model(im) # inference
|
13 |
+
results.render() # updates results.imgs with boxes and labels
|
14 |
+
return Image.fromarray(results.imgs[0])
|
15 |
+
inputs = gr.inputs.Image(type='pil', label="Original Image")
|
16 |
+
outputs = gr.outputs.Image(type="pil", label="Output Image")
|
17 |
+
title = "YOLOv3"
|
18 |
+
description = "YOLOv3 Gradio demo for object detection. Upload an image or click an example image to use."
|
19 |
+
article = "<p style='text-align: center'>YOLOv3 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov3' target='_blank'>Source code</a> |<a href='https://apps.apple.com/app/id1452689527' target='_blank'>iOS App</a></p>"
|
20 |
+
examples = [['soccer.jpg'], ['bus.jpg']]
|
21 |
+
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(
|
22 |
+
debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|