import gradio as gr import torch from PIL import Image # Model model = torch.hub.load('ultralytics/yolov5', 'custom', 'customModel/model.pt') def yolo(im, size=640): g = (size / max(im.size)) # gain im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(im) # inference results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.ims[0]) inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "Custom YOLOv5" description = "Custom YOLOv5 Gradio demo for object detection. Upload an image or click an example image to use." examples = [['c.jpg'], ['t.jpg']] gr.Interface(yolo, inputs, outputs, title=title, description=description, examples=examples, theme="huggingface").launch( debug=True)