Spaces:
Runtime error
Runtime error
| import os | |
| import copy | |
| import time | |
| import cv2 as cv | |
| import numpy as np | |
| import onnxruntime | |
| from PIL import Image | |
| import gradio | |
| def run_inference(onnx_session, input_size, image): | |
| # リサイズ | |
| temp_image = copy.deepcopy(image) | |
| resize_image = cv.resize(temp_image, dsize=(input_size, input_size)) | |
| x = cv.cvtColor(resize_image, cv.COLOR_BGR2RGB) | |
| # 前処理 | |
| x = np.array(x, dtype=np.float32) | |
| mean = [0.485, 0.456, 0.406] | |
| std = [0.229, 0.224, 0.225] | |
| x = (x / 255 - mean) / std | |
| x = x.transpose(2, 0, 1).astype('float32') | |
| x = x.reshape(-1, 3, input_size, input_size) | |
| # 推論 | |
| input_name = onnx_session.get_inputs()[0].name | |
| output_name = onnx_session.get_outputs()[0].name | |
| onnx_result = onnx_session.run([output_name], {input_name: x}) | |
| # 後処理 | |
| onnx_result = np.array(onnx_result).squeeze() | |
| min_value = np.min(onnx_result) | |
| max_value = np.max(onnx_result) | |
| onnx_result = (onnx_result - min_value) / (max_value - min_value) | |
| onnx_result *= 255 | |
| onnx_result = onnx_result.astype('uint8') | |
| return onnx_result | |
| # Load model | |
| onnx_session = onnxruntime.InferenceSession("u2net.onnx") | |
| def create_rgba(mode, image): | |
| out = run_inference( | |
| onnx_session, | |
| 320, | |
| image, | |
| ) | |
| resize_image = cv.resize(out, dsize=(image.shape[1], image.shape[0])) | |
| if mode == "binary": | |
| resize_image[resize_image > 255] = 255 | |
| resize_image[resize_image < 125] = 0 | |
| mask = Image.fromarray(resize_image) | |
| rgba_image = Image.fromarray(image).convert('RGBA') | |
| rgba_image.putalpha(mask) | |
| return rgba_image | |
| inputs = [gradio.inputs.Radio(["binary", "smooth"]), gradio.inputs.Image()] | |
| outputs = gradio.outputs.Image(type="pil") | |
| gradio.Interface(fn=create_rgba, inputs=inputs, outputs=outputs).launch() | |