Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,42 @@
|
|
1 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
2 |
-
|
3 |
-
|
|
|
4 |
from PIL import Image
|
5 |
-
|
6 |
import sys, os
|
7 |
import gradio as gr
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
|
12 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
|
|
|
|
|
13 |
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
tokenizer.src_lang = "en"
|
21 |
-
encodedText = tokenizer(
|
22 |
generatedTokens = model.generate(**encodedText, forced_bos_token_id=tokenizer.get_lang_id("ru"))
|
23 |
|
24 |
return tokenizer.batch_decode(generatedTokens, skip_special_tokens=True)[0]
|
25 |
|
26 |
-
demoApp = gr.Interface(extractAndTranslate, "image", "text")
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
2 |
+
from turtle import title
|
3 |
+
from transformers import pipeline
|
4 |
+
import numpy as np
|
5 |
from PIL import Image
|
|
|
6 |
import sys, os
|
7 |
import gradio as gr
|
8 |
|
9 |
+
|
10 |
+
|
11 |
|
12 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
|
13 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
|
14 |
+
pipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
|
15 |
+
images="dog.jpg"
|
16 |
|
17 |
+
def shot(image, labels_text):
|
18 |
+
PIL_image = Image.fromarray(np.uint8(image)).convert('RGB')
|
19 |
+
labels = labels_text.split(",")
|
20 |
+
res = pipe(images=PIL_image,
|
21 |
+
candidate_labels=labels,
|
22 |
+
hypothesis_template= "This is a photo of a {}")
|
23 |
+
return {dic["label"]: dic["score"] for dic in res}
|
24 |
+
# Translate
|
25 |
tokenizer.src_lang = "en"
|
26 |
+
encodedText = tokenizer(candidate_labels, return_tensors="pt")
|
27 |
generatedTokens = model.generate(**encodedText, forced_bos_token_id=tokenizer.get_lang_id("ru"))
|
28 |
|
29 |
return tokenizer.batch_decode(generatedTokens, skip_special_tokens=True)[0]
|
30 |
|
|
|
31 |
|
32 |
+
|
33 |
+
iface = gr.Interface(shot,
|
34 |
+
["image", "text"],
|
35 |
+
"label",
|
36 |
+
examples=[["dog.jpg", "dog,cat,bird"],
|
37 |
+
["germany.jpg", "germany,belgium,colombia"],
|
38 |
+
["colombia.jpg", "germany,belgium,colombia"]],
|
39 |
+
description="Add a picture and a list of labels separated by commas",
|
40 |
+
title="Zero-shot Image Classification")
|
41 |
+
|
42 |
+
iface.launch()
|