File size: 7,553 Bytes
72cd7d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gradio as gr
import torch
import numpy as np
from PIL import Image
import os
import json
import base64
from io import BytesIO
import requests
from typing import Dict, List, Any, Optional
from transformers.pipelines import pipeline

# MCP imports
from modelcontextprotocol.server import Server
from modelcontextprotocol.server.gradio import GradioServerTransport
from modelcontextprotocol.types import (
    CallToolRequestSchema,
    ErrorCode,
    ListToolsRequestSchema,
    McpError,
)

# Initialize the model
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)

# Function to generate embeddings from an image
def generate_embedding(image):
    if image is None:
        return None
    
    # Convert to PIL Image if needed
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    try:
        # Generate embedding using the transformers pipeline
        result = model(image)
        
        # Process the result based on its type
        embedding_list = None
        
        # Handle different possible output types
        if isinstance(result, torch.Tensor):
            embedding_list = result.detach().cpu().numpy().flatten().tolist()
        elif isinstance(result, np.ndarray):
            embedding_list = result.flatten().tolist()
        elif isinstance(result, list):
            # If it's a list of tensors or arrays
            if result and isinstance(result[0], (torch.Tensor, np.ndarray)):
                embedding_list = result[0].flatten().tolist() if hasattr(result[0], 'flatten') else result[0]
            else:
                embedding_list = result
        else:
            # Try to convert to a list as a last resort
            try:
                if result is not None:
                    embedding_list = list(result)
                else:
                    print("Result is None")
                    return None
            except:
                print(f"Couldn't convert result of type {type(result)} to list")
                return None
        
        # Ensure we have a valid embedding list
        if embedding_list is None:
            return None
            
        # Calculate embedding dimension
        embedding_dim = len(embedding_list)
        
        return {
            "embedding": embedding_list,
            "dimension": embedding_dim
        }
    except Exception as e:
        print(f"Error generating embedding: {str(e)}")
        return None

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)")
    gr.Markdown("Upload an image to generate embeddings using the Nomic Vision model.")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            embed_btn = gr.Button("Generate Embedding")
        
        with gr.Column():
            embedding_json = gr.JSON(label="Embedding Output")
            embedding_dim = gr.Textbox(label="Embedding Dimension")
    
    def update_embedding(img):
        result = generate_embedding(img)
        if result is None:
            return {
                embedding_json: None,
                embedding_dim: "No embedding generated"
            }
        return {
            embedding_json: result,
            embedding_dim: f"Dimension: {len(result['embedding'])}"
        }
    
    embed_btn.click(
        fn=update_embedding,
        inputs=[input_image],
        outputs=[embedding_json, embedding_dim]
    )

# MCP Server Implementation
class NomicEmbeddingServer:
    def __init__(self):
        self.server = Server(
            {
                "name": "nomic-embedding-server",
                "version": "0.1.0",
            },
            {
                "capabilities": {
                    "tools": {},
                },
            }
        )
        
        self.setup_tool_handlers()
        
        # Error handling
        self.server.onerror = lambda error: print(f"[MCP Error] {error}")
    
    def setup_tool_handlers(self):
        self.server.set_request_handler(ListToolsRequestSchema, self.handle_list_tools)
        self.server.set_request_handler(CallToolRequestSchema, self.handle_call_tool)
    
    async def handle_list_tools(self, request):
        return {
            "tools": [
                {
                    "name": "embed_image",
                    "description": "Generate embeddings for an image using nomic-ai/nomic-embed-vision-v1.5",
                    "inputSchema": {
                        "type": "object",
                        "properties": {
                            "image_url": {
                                "type": "string",
                                "description": "URL of the image to embed",
                            },
                            "image_data": {
                                "type": "string",
                                "description": "Base64-encoded image data (alternative to image_url)",
                            },
                        },
                        "anyOf": [
                            {"required": ["image_url"]},
                            {"required": ["image_data"]},
                        ],
                    },
                }
            ]
        }
    
    async def handle_call_tool(self, request):
        if request.params.name != "embed_image":
            raise McpError(
                ErrorCode.MethodNotFound,
                f"Unknown tool: {request.params.name}"
            )
        
        args = request.params.arguments
        
        try:
            # Handle image from URL
            if "image_url" in args:
                response = requests.get(args["image_url"])
                image = Image.open(BytesIO(response.content))
            
            # Handle image from base64 data
            elif "image_data" in args:
                image_data = base64.b64decode(args["image_data"])
                image = Image.open(BytesIO(image_data))
            
            else:
                raise McpError(
                    ErrorCode.InvalidParams,
                    "Either image_url or image_data must be provided"
                )
            
            # Generate embedding
            result = generate_embedding(image)
            
            return {
                "content": [
                    {
                        "type": "text",
                        "text": json.dumps(result, indent=2),
                    }
                ]
            }
            
        except Exception as e:
            return {
                "content": [
                    {
                        "type": "text",
                        "text": f"Error generating embedding: {str(e)}",
                    }
                ],
                "isError": True,
            }

# Initialize and run the MCP server
embedding_server = NomicEmbeddingServer()

# Connect the MCP server to the Gradio app
transport = GradioServerTransport(demo)
embedding_server.server.connect(transport)

# Launch the Gradio app
if __name__ == "__main__":
    # For Huggingface Spaces, we need to specify the server name and port
    demo.launch(server_name="0.0.0.0", server_port=7860)