Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import spaces | |
| import torch | |
| from diffusers import FluxInpaintPipeline | |
| import gradio as gr | |
| import re | |
| from PIL import Image | |
| import os | |
| import numpy as np | |
| def convert_to_fit_size(original_width_and_height, maximum_size = 2048): | |
| width, height =original_width_and_height | |
| if width <= maximum_size and height <= maximum_size: | |
| return width,height | |
| if width > height: | |
| scaling_factor = maximum_size / width | |
| else: | |
| scaling_factor = maximum_size / height | |
| new_width = int(width * scaling_factor) | |
| new_height = int(height * scaling_factor) | |
| return new_width, new_height | |
| def adjust_to_multiple_of_32(width: int, height: int): | |
| width = width - (width % 32) | |
| height = height - (height % 32) | |
| return width, height | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device) | |
| def sanitize_prompt(prompt): | |
| # Allow only alphanumeric characters, spaces, and basic punctuation | |
| allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]") | |
| sanitized_prompt = allowed_chars.sub("", prompt) | |
| return sanitized_prompt | |
| def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,progress=gr.Progress(track_tqdm=True)): | |
| # I'm not sure when this happen | |
| progress(0, desc="start-process-images") | |
| print("start-process-images") | |
| if not isinstance(image, dict): | |
| if image2 == None: | |
| print("empty mask") | |
| return image,None | |
| else: | |
| image = dict({'background': image, 'layers': [image2]}) | |
| if image2!=None: | |
| #print("use image2") | |
| mask = image2 | |
| else: | |
| if len(image['layers']) == 0: | |
| print("empty mask") | |
| return image | |
| print("use layer") | |
| mask = image['layers'][0] | |
| def process_inpaint(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4): | |
| if image == None: | |
| return None | |
| generators = [] | |
| generator = torch.Generator("cuda").manual_seed(seed) | |
| generators.append(generator) | |
| width,height = convert_to_fit_size(image.size) | |
| print(f"fit {width}x{height}") | |
| width,height = adjust_to_multiple_of_32(width,height) | |
| print(f"multiple {width}x{height}") | |
| image = image.resize((width, height), Image.LANCZOS) | |
| mask_image = mask_image.resize((width, height), Image.NEAREST) | |
| output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,width=width,height=height, | |
| guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256) | |
| return output.images[0] | |
| output = process_inpaint(image["background"],mask,prompt,inpaint_model,strength,seed) | |
| return output,mask | |
| def read_file(path: str) -> str: | |
| with open(path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| return content | |
| css=""" | |
| #col-left { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| #col-right { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css, elem_id="demo-container") as demo: | |
| with gr.Column(): | |
| gr.HTML(read_file("demo_header.html")) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False, elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed")) | |
| with gr.Row(elem_id="prompt-container", equal_height=False): | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt",value="a person",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt") | |
| btn = gr.Button("Inpaint", elem_id="run_button",variant="primary") | |
| image_mask = gr.Image(sources=['upload','clipboard'], elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None) | |
| with gr.Accordion(label="Advanced Settings", open=False): | |
| with gr.Row( equal_height=True): | |
| strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="Inpaint strength") | |
| seed = gr.Number(value=0, minimum=0, step=1, label="Inpaint seed") | |
| models = ["black-forest-labs/FLUX.1-schnell"] | |
| inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell") | |
| id_input=gr.Text(label="Name", visible=False) | |
| with gr.Column(): | |
| image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="webp") | |
| mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg") | |
| btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed], outputs =[image_out,mask_out], api_name='infer') | |
| gr.Examples( | |
| examples=[ | |
| ["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"], | |
| ["images/00538245_paint.jpg", "images/00538245_mask.jpg","a beautiful girl,wearing t-shirt",0.7,"images/00538245.jpg"], | |
| ["images/00207245_18.jpg", "images/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"images/00207245.jpg"] | |
| ] | |
| , | |
| #fn=example_out, | |
| inputs=[image,image_mask,prompt,strength,image_out], | |
| #outputs=[test_out], | |
| #cache_examples=False, | |
| ) | |
| gr.HTML( | |
| """ | |
| """ | |
| ) | |
| demo.launch() | |