flux1-schnell-mask-inpaint / flux1_inpaint.py
Akjava's picture
fix strength
22ce6bb
raw
history blame
1.94 kB
import torch
from diffusers import FluxInpaintPipeline
from diffusers.utils import load_image
from PIL import Image
import sys
import numpy as np
import json
import os
import spaces
device = "cuda"
pipeline_device = 0 if torch.cuda.is_available() else -1 # TODO mix above
torch_dtype = torch.float16
debug = True
@spaces.GPU
def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
if image.shape[0:1] != image_mask.shape[0:1]:
print("error image and image_mask must have the same image size")
return None
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = image.cpu().numpy() # torch.Tensor を NumPy 配列に変換
image = (image * 255).astype(np.uint8) # 0~1 の範囲を 0~255 に戻し、uint8 型にキャスト
image = image.transpose(0, 2, 3, 1) # (1, 3, H, W) から (1, H, W, 3) に形状を変更
return image[0]
@spaces.GPU
def process_image(image,mask_image,prompt="a girl",negative_prompt="",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
if image == None:
return None
#control_image=make_inpaint_condition(image,mask_image)
#mask_image.save("_mask_image.jpg")
#image = control_image
pipe = FluxInpaintPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe.to(device)
#batch_size =1
generators = []
generator = torch.Generator(device).manual_seed(seed)
generators.append(generator)
output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength)
return output.images[0]
if __name__ == "__main__":
image = Image.open(sys.argv[1])
mask = Image.open(sys.argv[2])
output = process_image(image,mask)
output.save(sys.argv[3])