# Importing necessary libraries and modules from langchain_core.tools.base import BaseTool from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent import pandas as pd from langchain_google_genai import ChatGoogleGenerativeAI from langchain.agents.agent_types import AgentType # Defining the AnswerExcelTool class which extends BaseTool class AnswerExcelTool(BaseTool): name : str = "answer_excel_tool" description: str = "Given the path to a file containing an excel file and a query, this tool tries to get an answer by querying the excel file. Provide the whole question in input. Another agent will later break down the task." def _run(self, query: str, file_path: str) -> str: # Method to run the tool, using a query and the file path to an Excel file df = pd.read_excel(file_path) # Reading the Excel file into a DataFrame llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) # Configuring the LLM agent_executor = create_pandas_dataframe_agent( # Creating a Pandas DataFrame agent with the LLM and DataFrame llm, df, agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, allow_dangerous_code=True # IMPORTANT: Understand the risks ) return agent_executor(query) # Executing the query using the agent