File size: 7,161 Bytes
89f6ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')

# Actual demo code
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random

from optimization import optimize_pipeline_


MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"

LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 13
MAX_FRAMES_MODEL = 121
NUM_FRAMES_DEFAULT = 81


pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
    transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer_2',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    torch_dtype=torch.bfloat16,
).to('cuda')


optimize_pipeline_(pipe,
    image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
    prompt='prompt',
    height=LANDSCAPE_HEIGHT,
    width=LANDSCAPE_WIDTH,
    num_frames=MAX_FRAMES_MODEL,
)


default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"


def resize_image(image: Image.Image) -> Image.Image:
    if image.height > image.width:
        transposed = image.transpose(Image.Transpose.ROTATE_90)
        resized = resize_image_landscape(transposed)
        return resized.transpose(Image.Transpose.ROTATE_270)
    return resize_image_landscape(image)


def resize_image_landscape(image: Image.Image) -> Image.Image:
    target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
    width, height = image.size
    in_aspect = width / height
    if in_aspect > target_aspect:
        new_width = round(height * target_aspect)
        left = (width - new_width) // 2
        image = image.crop((left, 0, left + new_width, height))
    else:
        new_height = round(width / target_aspect)
        top = (height - new_height) // 2
        image = image.crop((0, top, width, top + new_height))
    return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)

def get_duration(
    input_image,
    prompt,
    negative_prompt,
    num_frames,
    guidance_scale,
    steps,
    seed,
    randomize_seed,
    progress,
):
    forward_duration_base = 8
    forward_duration = forward_duration_base * (num_frames / NUM_FRAMES_DEFAULT)**1.5
    forward_count = 2 if guidance_scale > 1 else 1
    return 10 + steps * forward_count * forward_duration

@spaces.GPU(duration=get_duration)
def generate_video(
    input_image,
    prompt,
    negative_prompt=default_negative_prompt,
    num_frames = NUM_FRAMES_DEFAULT,
    guidance_scale = 1,
    steps = 28,
    seed = 42,
    randomize_seed = False,
    progress=gr.Progress(track_tqdm=True),
):
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = resize_image(input_image)

    output_frames_list = pipe(
        image=resized_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized_image.height,
        width=resized_image.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        num_inference_steps=int(steps),
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
    ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)

    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# wan2-2-fp8da-81-frames")
    #gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            num_frames_input = gr.Slider(minimum=MIN_FRAMES_MODEL, maximum=MAX_FRAMES_MODEL, step=1, value=NUM_FRAMES_DEFAULT, label="Frames")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                steps_slider = gr.Slider(minimum=1, maximum=40, step=1, value=28, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=1.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale")

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        input_image_component, prompt_input,
        negative_prompt_input, num_frames_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    gr.Examples(
        examples=[ 
            [
                "wan_i2v_input.JPG",
                "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
            ],
        ],
        inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch(mcp_server=True)