import os import time import uuid import torch import gradio as gr from diffusers import WanPipeline, AutoencoderKLWan from diffusers.utils import export_to_video from dfloat11 import DFloat11Model import spaces os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" @spaces.GPU(enable_queue=True) def generate_video(prompt, negative_prompt, width, height, num_frames, guidance_scale, guidance_scale_2, num_inference_steps, fps, cpu_offload): start_time = time.time() torch.cuda.empty_cache() # Load VAE and Wan2.2 pipeline vae = AutoencoderKLWan.from_pretrained( "Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32, ) pipe = WanPipeline.from_pretrained( "Wan-AI/Wan2.2-T2V-A14B-Diffusers", vae=vae, torch_dtype=torch.bfloat16, ) # Only apply second-stage DFloat11 model DFloat11Model.from_pretrained( "DFloat11/Wan2.2-T2V-A14B-2-DF11", device="cpu", cpu_offload=cpu_offload, bfloat16_model=pipe.transformer_2, ) pipe.enable_model_cpu_offload() # Generate video frames output_frames = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=num_frames, guidance_scale=guidance_scale, guidance_scale_2=guidance_scale_2, num_inference_steps=num_inference_steps, ).frames[0] # Export to video output_path = f"/tmp/{uuid.uuid4().hex}_t2v.mp4" export_to_video(output_frames, output_path, fps=fps) elapsed = time.time() - start_time print(f"✅ Generated in {elapsed:.2f}s, saved to {output_path}") return output_path # Gradio UI with gr.Blocks() as demo: gr.Markdown("## 🎬 Wan2.2 + DFloat11 (Stage 2 only) - Text to Video Generator") with gr.Row(): prompt = gr.Textbox(label="Prompt", value="A serene koi pond at night, with glowing lanterns reflecting on the rippling water. Ethereal fireflies dance above as cherry blossoms gently fall.", lines=3) negative_prompt = gr.Textbox(label="Negative Prompt", value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", lines=3) with gr.Row(): width = gr.Slider(256, 1280, value=1280, step=64, label="Width") height = gr.Slider(256, 720, value=720, step=64, label="Height") fps = gr.Slider(8, 30, value=16, step=1, label="FPS") with gr.Row(): num_frames = gr.Slider(8, 81, value=81, step=1, label="Frames") num_inference_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps") with gr.Row(): guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.1, label="Guidance Scale (Stage 1)") guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.1, label="Guidance Scale (Stage 2)") cpu_offload = gr.Checkbox(label="Enable CPU Offload", value=True) with gr.Row(): btn = gr.Button("🚀 Generate Video") output_video = gr.Video(label="Generated Video") btn.click( generate_video, inputs=[prompt, negative_prompt, width, height, num_frames, guidance_scale, guidance_scale_2, num_inference_steps, fps, cpu_offload], outputs=[output_video] ) demo.launch()