Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import json | |
| import logging | |
| import argparse | |
| import torch | |
| import os | |
| from os import path | |
| from PIL import Image | |
| import numpy as np | |
| import spaces | |
| import copy | |
| import random | |
| import time | |
| from typing import Any, Dict, List, Optional, Union | |
| from huggingface_hub import hf_hub_download | |
| from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image | |
| import safetensors.torch | |
| from safetensors.torch import load_file | |
| from pipeline import FluxWithCFGPipeline | |
| from transformers import CLIPModel, CLIPProcessor, CLIPConfig | |
| import gc | |
| import warnings | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # Load LoRAs from JSON file | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| dtype = torch.bfloat16 | |
| pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype, text_encoder_3=None, tokenizer_3=None | |
| ).to("cuda") | |
| pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda") | |
| pipe.to("cuda") | |
| clipmodel = 'norm' | |
| if clipmodel == "long": | |
| model_id = "zer0int/LongCLIP-GmP-ViT-L-14" | |
| config = CLIPConfig.from_pretrained(model_id) | |
| maxtokens = 77 | |
| if clipmodel == "norm": | |
| model_id = "zer0int/CLIP-GmP-ViT-L-14" | |
| config = CLIPConfig.from_pretrained(model_id) | |
| maxtokens = 77 | |
| clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda") | |
| clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True) | |
| config.text_config.max_position_embeddings = 77 | |
| pipe.tokenizer = clip_processor.tokenizer | |
| pipe.text_encoder = clip_model.text_model | |
| pipe.tokenizer_max_length = maxtokens | |
| pipe.text_encoder.dtype = torch.bfloat16 | |
| torch.cuda.empty_cache() | |
| MAX_SEED = 2**32-1 | |
| class calculateDuration: | |
| def __init__(self, activity_name=""): | |
| self.activity_name = activity_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| if self.activity_name: | |
| print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def update_selection(evt: gr.SelectData, width, height): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| width = 768 | |
| height = 1024 | |
| elif selected_lora["aspect"] == "landscape": | |
| width = 1024 | |
| height = 768 | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index, | |
| width, | |
| height, | |
| ) | |
| def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress): | |
| pipe.to("cuda") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| with calculateDuration("Generating image"): | |
| # Generate image | |
| image = pipe( | |
| prompt=f"{prompt} {trigger_word}", | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| ).images[0] | |
| return image | |
| def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
| if negative_prompt == "": | |
| negative_prompt = None | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| # Load LoRA weights | |
| with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
| if "weights" in selected_lora: | |
| pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
| else: | |
| pipe.load_lora_weights(lora_path) | |
| # Set random seed for reproducibility | |
| with calculateDuration("Randomizing seed"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress) | |
| pipe.to("cpu") | |
| pipe.unload_lora_weights() | |
| return image, seed | |
| run_lora.zerogpu = True | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #gallery .grid-wrap{height: 10vh} | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
| title = gr.HTML( | |
| """<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""", | |
| elem_id="title", | |
| ) | |
| # Info blob stating what the app is running | |
| info_blob = gr.HTML( | |
| """<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>""" | |
| ) | |
| # Info blob stating what the app is running | |
| info_blob = gr.HTML( | |
| """<div id="info_blob"> *Auto-planting of prompts with a choice LoRA trigger errors out in this space over flaws yet unclear. In its stead, we pose numbered LoRA-box rows & a matched token cheat-sheet: ungainly & free. So, prephrase your prompts w/: 1-2. HST style autochrome |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST Peterhof photo |18-19. HST |20. HST portrait |21. HST |22. HST 80s Perestroika-era Soviet photo |23-30. HST |31. How2Draw a__ |32. propaganda poster |33. TOK hybrid photo of__ with cartoon of__ |34. 2004 IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 |46. FilmFotos |47. ff-collage |48. HST |49-50. AOS |51. cover </div>""" | |
| ) | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Inventory", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery" | |
| ) | |
| with gr.Column(scale=4): | |
| result = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=True): | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=1, value=3) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=768) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95) | |
| gallery.select( | |
| update_selection, | |
| inputs=[width, height], | |
| outputs=[prompt, selected_info, selected_index, width, height] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale], | |
| outputs=[result, seed] | |
| ) | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| app.queue(default_concurrency_limit=2).launch(show_error=True) | |
| app.launch() | |