Spaces:
Runtime error
Runtime error
| import torch | |
| import numpy as np | |
| from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
| from diffusers import FlowMatchEulerDiscreteScheduler, AutoPipelineForImage2Image, FluxPipeline, FluxTransformer2DModel | |
| from diffusers import StableDiffusion3Pipeline, AutoencoderKL, DiffusionPipeline, | |
| from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, SD3LoraLoaderMixin | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| from PIL import Image | |
| from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxTransformer2DModel | |
| from diffusers.utils import is_torch_xla_available | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| # Constants for shift calculation | |
| BASE_SEQ_LEN = 256 | |
| MAX_SEQ_LEN = 4096 | |
| BASE_SHIFT = 0.5 | |
| MAX_SHIFT = 1.2 | |
| # Helper functions | |
| def calculate_timestep_shift(image_seq_len: int) -> float: | |
| """Calculates the timestep shift (mu) based on the image sequence length.""" | |
| m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN) | |
| b = BASE_SHIFT - m * BASE_SEQ_LEN | |
| mu = image_seq_len * m + b | |
| return mu | |
| def prepare_timesteps( | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[float] = None, | |
| ) -> (torch.Tensor, int): | |
| """Prepares the timesteps for the diffusion process.""" | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed.") | |
| if timesteps is not None: | |
| scheduler.set_timesteps(timesteps=timesteps, device=device) | |
| elif sigmas is not None: | |
| scheduler.set_timesteps(sigmas=sigmas, device=device) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, mu=mu) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| return timesteps, num_inference_steps | |
| # FLUX pipeline function | |
| class FluxWithCFGPipeline(StableDiffusion3Pipeline): | |
| def __init__( | |
| self, | |
| transformer: FluxTransformer2DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: T5TokenizerFast, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_3: None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| text_encoder_3=None, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| tokenizer_3=None, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 16 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 64 | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_inference_steps: int = 4, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| max_sequence_length: int = 300, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| negative_prompt, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # 3. Encode prompt | |
| lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None | |
| prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| negative_prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_timestep_shift(image_seq_len) | |
| timesteps, num_inference_steps = prepare_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # Handle guidance | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None | |
| # 6. Denoising loop | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred_uncond = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| # Yield intermediate result | |
| torch.cuda.empty_cache() | |
| # Final image | |
| return self._decode_latents_to_image(latents, height, width, output_type) | |
| self.maybe_free_model_hooks() | |
| torch.cuda.empty_cache() | |
| def _decode_latents_to_image(self, latents, height, width, output_type, vae=None): | |
| """Decodes the given latents into an image.""" | |
| vae = vae or self.vae | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor | |
| image = vae.decode(latents, return_dict=False)[0] | |
| return self.image_processor.postprocess(image, output_type=output_type)[0] | |
| class FluxWithCFGPipeline(StableDiffusion3Pipeline): | |
| def __init__( | |
| self, | |
| transformer: FluxTransformer2DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: T5TokenizerFast, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_3: None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| text_encoder_3=None, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| tokenizer_3=None, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 16 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 64 | |
| def generate_image( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_inference_steps: int = 4, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| max_sequence_length: int = 300, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| negative_prompt, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # 3. Encode prompt | |
| lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None | |
| prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| negative_prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_timestep_shift(image_seq_len) | |
| timesteps, num_inference_steps = prepare_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # Handle guidance | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None | |
| # 6. Denoising loop | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred_uncond = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| # Yield intermediate result | |
| torch.cuda.empty_cache() | |
| # Final image | |
| return self._decode_latents_to_image(latents, height, width, output_type) | |
| self.maybe_free_model_hooks() | |
| torch.cuda.empty_cache() | |
| def _decode_latents_to_image(self, latents, height, width, output_type, vae=None): | |
| """Decodes the given latents into an image.""" | |
| vae = vae or self.vae | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor | |
| image = vae.decode(latents, return_dict=False)[0] | |
| return self.image_processor.postprocess(image, output_type=output_type)[0] |