Spaces:
Runtime error
Runtime error
Upload pipeline.py
Browse files- pipeline.py +678 -0
pipeline.py
ADDED
|
@@ -0,0 +1,678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import html
|
| 4 |
+
import inspect
|
| 5 |
+
import re
|
| 6 |
+
import urllib.parse as ul
|
| 7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, CLIPTextModelWithProjection
|
| 8 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoPipelineForImage2Image, FluxPipeline, FluxTransformer2DModel
|
| 9 |
+
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, DiffusionPipeline, ImagePipelineOutput
|
| 10 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 11 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, SD3LoraLoaderMixin
|
| 12 |
+
from diffusers.utils import (
|
| 13 |
+
USE_PEFT_BACKEND,
|
| 14 |
+
is_torch_xla_available,
|
| 15 |
+
logging,
|
| 16 |
+
BACKENDS_MAPPING,
|
| 17 |
+
deprecate,
|
| 18 |
+
replace_example_docstring,
|
| 19 |
+
scale_lora_layers,
|
| 20 |
+
unscale_lora_layers,
|
| 21 |
+
)
|
| 22 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 23 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 24 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 25 |
+
from PIL import Image
|
| 26 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxTransformer2DModel
|
| 27 |
+
from diffusers.utils import is_torch_xla_available
|
| 28 |
+
|
| 29 |
+
if is_torch_xla_available():
|
| 30 |
+
import torch_xla.core.xla_model as xm
|
| 31 |
+
|
| 32 |
+
XLA_AVAILABLE = True
|
| 33 |
+
else:
|
| 34 |
+
XLA_AVAILABLE = False
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 37 |
+
|
| 38 |
+
# Constants for shift calculation
|
| 39 |
+
BASE_SEQ_LEN = 256
|
| 40 |
+
MAX_SEQ_LEN = 4096
|
| 41 |
+
BASE_SHIFT = 0.5
|
| 42 |
+
MAX_SHIFT = 1.2
|
| 43 |
+
|
| 44 |
+
# Helper functions
|
| 45 |
+
def calculate_timestep_shift(image_seq_len: int) -> float:
|
| 46 |
+
"""Calculates the timestep shift (mu) based on the image sequence length."""
|
| 47 |
+
m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
|
| 48 |
+
b = BASE_SHIFT - m * BASE_SEQ_LEN
|
| 49 |
+
mu = image_seq_len * m + b
|
| 50 |
+
return mu
|
| 51 |
+
|
| 52 |
+
def prepare_timesteps(
|
| 53 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 54 |
+
num_inference_steps: Optional[int] = None,
|
| 55 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 56 |
+
timesteps: Optional[List[int]] = None,
|
| 57 |
+
sigmas: Optional[List[float]] = None,
|
| 58 |
+
mu: Optional[float] = None,
|
| 59 |
+
) -> (torch.Tensor, int):
|
| 60 |
+
"""Prepares the timesteps for the diffusion process."""
|
| 61 |
+
if timesteps is not None and sigmas is not None:
|
| 62 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
|
| 63 |
+
|
| 64 |
+
if timesteps is not None:
|
| 65 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device)
|
| 66 |
+
elif sigmas is not None:
|
| 67 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device)
|
| 68 |
+
else:
|
| 69 |
+
scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)
|
| 70 |
+
|
| 71 |
+
timesteps = scheduler.timesteps
|
| 72 |
+
num_inference_steps = len(timesteps)
|
| 73 |
+
return timesteps, num_inference_steps
|
| 74 |
+
|
| 75 |
+
# FLUX pipeline function
|
| 76 |
+
class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 80 |
+
vae: AutoencoderKL,
|
| 81 |
+
text_encoder: CLIPTextModel,
|
| 82 |
+
tokenizer: CLIPTokenizer,
|
| 83 |
+
text_encoder_2: T5EncoderModel,
|
| 84 |
+
tokenizer_2: T5TokenizerFast,
|
| 85 |
+
transformer: FluxTransformer2DModel,
|
| 86 |
+
):
|
| 87 |
+
super().__init__()
|
| 88 |
+
|
| 89 |
+
self.register_modules(
|
| 90 |
+
vae=vae,
|
| 91 |
+
text_encoder=text_encoder,
|
| 92 |
+
text_encoder_2=text_encoder_2,
|
| 93 |
+
tokenizer=tokenizer,
|
| 94 |
+
tokenizer_2=tokenizer_2,
|
| 95 |
+
transformer=transformer,
|
| 96 |
+
scheduler=scheduler,
|
| 97 |
+
)
|
| 98 |
+
self.vae_scale_factor = (
|
| 99 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
| 100 |
+
)
|
| 101 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 102 |
+
self.tokenizer_max_length = (
|
| 103 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
| 104 |
+
)
|
| 105 |
+
self.default_sample_size = 64
|
| 106 |
+
|
| 107 |
+
def _get_t5_prompt_embeds(
|
| 108 |
+
self,
|
| 109 |
+
prompt: Union[str, List[str]] = None,
|
| 110 |
+
num_images_per_prompt: int = 1,
|
| 111 |
+
max_sequence_length: int = 512,
|
| 112 |
+
device: Optional[torch.device] = None,
|
| 113 |
+
dtype: Optional[torch.dtype] = None,
|
| 114 |
+
):
|
| 115 |
+
device = device or self._execution_device
|
| 116 |
+
dtype = dtype or self.text_encoder.dtype
|
| 117 |
+
|
| 118 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 119 |
+
batch_size = len(prompt)
|
| 120 |
+
|
| 121 |
+
text_inputs = self.tokenizer_2(
|
| 122 |
+
prompt,
|
| 123 |
+
padding="max_length",
|
| 124 |
+
max_length=max_sequence_length,
|
| 125 |
+
truncation=True,
|
| 126 |
+
return_length=True,
|
| 127 |
+
return_overflowing_tokens=True,
|
| 128 |
+
return_tensors="pt",
|
| 129 |
+
)
|
| 130 |
+
text_input_ids = text_inputs.input_ids
|
| 131 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
| 132 |
+
|
| 133 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 134 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 135 |
+
logger.warning(
|
| 136 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 137 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
| 141 |
+
|
| 142 |
+
dtype = self.text_encoder_2.dtype
|
| 143 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 144 |
+
|
| 145 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 146 |
+
|
| 147 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 148 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 149 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 150 |
+
|
| 151 |
+
return prompt_embeds
|
| 152 |
+
|
| 153 |
+
def _get_clip_prompt_embeds(
|
| 154 |
+
self,
|
| 155 |
+
prompt: Union[str, List[str]],
|
| 156 |
+
num_images_per_prompt: int = 1,
|
| 157 |
+
device: Optional[torch.device] = None,
|
| 158 |
+
):
|
| 159 |
+
device = device or self._execution_device
|
| 160 |
+
|
| 161 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 162 |
+
batch_size = len(prompt)
|
| 163 |
+
|
| 164 |
+
text_inputs = self.tokenizer(
|
| 165 |
+
prompt,
|
| 166 |
+
padding="max_length",
|
| 167 |
+
max_length=self.tokenizer_max_length,
|
| 168 |
+
truncation=True,
|
| 169 |
+
return_overflowing_tokens=False,
|
| 170 |
+
return_length=False,
|
| 171 |
+
return_tensors="pt",
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
text_input_ids = text_inputs.input_ids
|
| 175 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 176 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 177 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 178 |
+
logger.warning(
|
| 179 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 180 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 181 |
+
)
|
| 182 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
| 183 |
+
|
| 184 |
+
# Use pooled output of CLIPTextModel
|
| 185 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 186 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 187 |
+
|
| 188 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 189 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
| 190 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 191 |
+
|
| 192 |
+
return prompt_embeds
|
| 193 |
+
|
| 194 |
+
def encode_prompt(
|
| 195 |
+
self,
|
| 196 |
+
prompt: Union[str, List[str]],
|
| 197 |
+
prompt_2: Union[str, List[str]],
|
| 198 |
+
num_images_per_prompt: int = 1,
|
| 199 |
+
max_sequence_length: int = 512,
|
| 200 |
+
do_classifier_free_guidance: bool = True,
|
| 201 |
+
device: Optional[torch.device] = None,
|
| 202 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 203 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 204 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 205 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 206 |
+
negative_prompt_2_embed: Optional[torch.Tensor] = None,
|
| 207 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 208 |
+
negative_pooled_prompt_2_embed: Optional[torch.FloatTensor] = None,
|
| 209 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 210 |
+
lora_scale: Optional[float] = None,
|
| 211 |
+
):
|
| 212 |
+
device = device or self._execution_device
|
| 213 |
+
if device is None:
|
| 214 |
+
device = self._execution_device
|
| 215 |
+
|
| 216 |
+
# set lora scale so that monkey patched LoRA
|
| 217 |
+
# function of text encoder can correctly access it
|
| 218 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
| 219 |
+
self._lora_scale = lora_scale
|
| 220 |
+
|
| 221 |
+
# dynamically adjust the LoRA scale
|
| 222 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 223 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 224 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 225 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 226 |
+
|
| 227 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 228 |
+
if prompt is not None:
|
| 229 |
+
batch_size = len(prompt)
|
| 230 |
+
else:
|
| 231 |
+
batch_size = prompt_embeds.shape[0]
|
| 232 |
+
|
| 233 |
+
if prompt_embeds is None:
|
| 234 |
+
prompt_2 = prompt_2 or prompt
|
| 235 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 236 |
+
|
| 237 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
| 238 |
+
prompt=prompt,
|
| 239 |
+
device=device,
|
| 240 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 241 |
+
)
|
| 242 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
| 243 |
+
prompt=prompt_2,
|
| 244 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 245 |
+
max_sequence_length=max_sequence_length,
|
| 246 |
+
device=device,
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 250 |
+
negative_prompt = negative_prompt or ""
|
| 251 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 252 |
+
|
| 253 |
+
# normalize str to list
|
| 254 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 255 |
+
negative_prompt_2 = (
|
| 256 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 260 |
+
raise TypeError(
|
| 261 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 262 |
+
f" {type(prompt)}."
|
| 263 |
+
)
|
| 264 |
+
elif batch_size != len(negative_prompt):
|
| 265 |
+
raise ValueError(
|
| 266 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 267 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 268 |
+
" the batch size of `prompt`."
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 272 |
+
negative_prompt,
|
| 273 |
+
device=device,
|
| 274 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 275 |
+
)
|
| 276 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
| 277 |
+
|
| 278 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
| 279 |
+
prompt=negative_prompt_2,
|
| 280 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 281 |
+
max_sequence_length=max_sequence_length,
|
| 282 |
+
device=device,
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
| 286 |
+
negative_clip_prompt_embeds,
|
| 287 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
| 291 |
+
negative_pooled_prompt_embeds = torch.cat(
|
| 292 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
if self.text_encoder is not None:
|
| 296 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 297 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 298 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 299 |
+
|
| 300 |
+
if self.text_encoder_2 is not None:
|
| 301 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 302 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 303 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 304 |
+
|
| 305 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
| 306 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
| 307 |
+
|
| 308 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 309 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 310 |
+
|
| 311 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids, negative_prompt_embeds, negative_pooled_prompt_embeds
|
| 312 |
+
|
| 313 |
+
def check_inputs(
|
| 314 |
+
self,
|
| 315 |
+
prompt,
|
| 316 |
+
prompt_2,
|
| 317 |
+
height,
|
| 318 |
+
width,
|
| 319 |
+
negative_prompt=None,
|
| 320 |
+
negative_prompt_2=None,
|
| 321 |
+
prompt_embeds=None,
|
| 322 |
+
negative_prompt_embeds=None,
|
| 323 |
+
pooled_prompt_embeds=None,
|
| 324 |
+
negative_pooled_prompt_embeds=None,
|
| 325 |
+
max_sequence_length=None,
|
| 326 |
+
):
|
| 327 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 328 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 329 |
+
|
| 330 |
+
if prompt is not None and prompt_embeds is not None:
|
| 331 |
+
raise ValueError(
|
| 332 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 333 |
+
" only forward one of the two."
|
| 334 |
+
)
|
| 335 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 336 |
+
raise ValueError(
|
| 337 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 338 |
+
" only forward one of the two."
|
| 339 |
+
)
|
| 340 |
+
elif prompt is None and prompt_embeds is None:
|
| 341 |
+
raise ValueError(
|
| 342 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 343 |
+
)
|
| 344 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 345 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 346 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 347 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 348 |
+
|
| 349 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 350 |
+
raise ValueError(
|
| 351 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 352 |
+
)
|
| 353 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 354 |
+
raise ValueError(
|
| 355 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 356 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 357 |
+
)
|
| 358 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 359 |
+
raise ValueError(
|
| 360 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 361 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 362 |
+
)
|
| 363 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 364 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
| 365 |
+
|
| 366 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 367 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 368 |
+
|
| 369 |
+
@staticmethod
|
| 370 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 371 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 372 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 373 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 374 |
+
|
| 375 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 376 |
+
|
| 377 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 378 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 382 |
+
|
| 383 |
+
@staticmethod
|
| 384 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
| 385 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
| 386 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
| 387 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
| 388 |
+
|
| 389 |
+
return latents
|
| 390 |
+
|
| 391 |
+
@staticmethod
|
| 392 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
| 393 |
+
batch_size, num_patches, channels = latents.shape
|
| 394 |
+
|
| 395 |
+
height = height // vae_scale_factor
|
| 396 |
+
width = width // vae_scale_factor
|
| 397 |
+
|
| 398 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
| 399 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
| 400 |
+
|
| 401 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
| 402 |
+
|
| 403 |
+
return latents
|
| 404 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 405 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 406 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 407 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 408 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 409 |
+
# and should be between [0, 1]
|
| 410 |
+
|
| 411 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 412 |
+
extra_step_kwargs = {}
|
| 413 |
+
if accepts_eta:
|
| 414 |
+
extra_step_kwargs["eta"] = eta
|
| 415 |
+
|
| 416 |
+
# check if the scheduler accepts generator
|
| 417 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 418 |
+
if accepts_generator:
|
| 419 |
+
extra_step_kwargs["generator"] = generator
|
| 420 |
+
return extra_step_kwargs
|
| 421 |
+
|
| 422 |
+
def enable_vae_slicing(self):
|
| 423 |
+
r"""
|
| 424 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 425 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 426 |
+
"""
|
| 427 |
+
self.vae.enable_slicing()
|
| 428 |
+
|
| 429 |
+
def disable_vae_slicing(self):
|
| 430 |
+
r"""
|
| 431 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
| 432 |
+
computing decoding in one step.
|
| 433 |
+
"""
|
| 434 |
+
self.vae.disable_slicing()
|
| 435 |
+
|
| 436 |
+
def enable_vae_tiling(self):
|
| 437 |
+
r"""
|
| 438 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 439 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 440 |
+
processing larger images.
|
| 441 |
+
"""
|
| 442 |
+
self.vae.enable_tiling()
|
| 443 |
+
|
| 444 |
+
def disable_vae_tiling(self):
|
| 445 |
+
r"""
|
| 446 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
| 447 |
+
computing decoding in one step.
|
| 448 |
+
"""
|
| 449 |
+
self.vae.disable_tiling()
|
| 450 |
+
|
| 451 |
+
def prepare_latents(
|
| 452 |
+
self,
|
| 453 |
+
batch_size,
|
| 454 |
+
num_channels_latents,
|
| 455 |
+
height,
|
| 456 |
+
width,
|
| 457 |
+
dtype,
|
| 458 |
+
device,
|
| 459 |
+
generator,
|
| 460 |
+
latents=None,
|
| 461 |
+
):
|
| 462 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
| 463 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
| 464 |
+
|
| 465 |
+
shape = (batch_size, num_channels_latents, height, width)
|
| 466 |
+
|
| 467 |
+
if latents is not None:
|
| 468 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
| 469 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
| 470 |
+
|
| 471 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 472 |
+
raise ValueError(
|
| 473 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 474 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 478 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
| 479 |
+
|
| 480 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
| 481 |
+
|
| 482 |
+
return latents, latent_image_ids
|
| 483 |
+
|
| 484 |
+
@property
|
| 485 |
+
def guidance_scale(self):
|
| 486 |
+
return self._guidance_scale
|
| 487 |
+
|
| 488 |
+
@property
|
| 489 |
+
def do_classifier_free_guidance(self):
|
| 490 |
+
return self._guidance_scale > 1
|
| 491 |
+
|
| 492 |
+
@property
|
| 493 |
+
def joint_attention_kwargs(self):
|
| 494 |
+
return self._joint_attention_kwargs
|
| 495 |
+
|
| 496 |
+
@property
|
| 497 |
+
def num_timesteps(self):
|
| 498 |
+
return self._num_timesteps
|
| 499 |
+
|
| 500 |
+
@property
|
| 501 |
+
def interrupt(self):
|
| 502 |
+
return self._interrupt
|
| 503 |
+
|
| 504 |
+
@torch.no_grad()
|
| 505 |
+
@torch.inference_mode()
|
| 506 |
+
def __call__(
|
| 507 |
+
self,
|
| 508 |
+
prompt: Union[str, List[str]] = None,
|
| 509 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 510 |
+
height: Optional[int] = None,
|
| 511 |
+
width: Optional[int] = None,
|
| 512 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 513 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 514 |
+
num_inference_steps: int = 8,
|
| 515 |
+
timesteps: List[int] = None,
|
| 516 |
+
eta: Optional[float] = 0.0,
|
| 517 |
+
guidance_scale: float = 3.5,
|
| 518 |
+
device: Optional[int] = None,
|
| 519 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 520 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 521 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 522 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 523 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 524 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 525 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 526 |
+
output_type: Optional[str] = "pil",
|
| 527 |
+
return_dict: bool = True,
|
| 528 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 529 |
+
max_sequence_length: int = 300,
|
| 530 |
+
**kwargs,
|
| 531 |
+
):
|
| 532 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 533 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 534 |
+
|
| 535 |
+
# 1. Check inputs
|
| 536 |
+
self.check_inputs(
|
| 537 |
+
prompt,
|
| 538 |
+
prompt_2,
|
| 539 |
+
height,
|
| 540 |
+
width,
|
| 541 |
+
negative_prompt=negative_prompt,
|
| 542 |
+
negative_prompt_2=negative_prompt_2,
|
| 543 |
+
prompt_embeds=prompt_embeds,
|
| 544 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 545 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 546 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 547 |
+
max_sequence_length=max_sequence_length,
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
self._guidance_scale = guidance_scale
|
| 551 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 552 |
+
self._interrupt = False
|
| 553 |
+
|
| 554 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 555 |
+
|
| 556 |
+
# 2. Define call parameters
|
| 557 |
+
if prompt is not None and isinstance(prompt, str):
|
| 558 |
+
batch_size = 1
|
| 559 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 560 |
+
batch_size = len(prompt)
|
| 561 |
+
else:
|
| 562 |
+
batch_size = prompt_embeds.shape[0]
|
| 563 |
+
|
| 564 |
+
device = self._execution_device
|
| 565 |
+
|
| 566 |
+
lora_scale = (
|
| 567 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 568 |
+
)
|
| 569 |
+
(
|
| 570 |
+
prompt_embeds,
|
| 571 |
+
negative_prompt_embeds,
|
| 572 |
+
pooled_prompt_embeds,
|
| 573 |
+
negative_pooled_prompt_embeds,
|
| 574 |
+
) = self.encode_prompt(
|
| 575 |
+
prompt=prompt,
|
| 576 |
+
prompt_2=prompt_2,
|
| 577 |
+
negative_prompt=negative_prompt,
|
| 578 |
+
negative_prompt_2=negative_prompt_2,
|
| 579 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 580 |
+
prompt_embeds=prompt_embeds,
|
| 581 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 582 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 583 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 584 |
+
device=device,
|
| 585 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 586 |
+
max_sequence_length=max_sequence_length,
|
| 587 |
+
lora_scale=lora_scale,
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
if self.do_classifier_free_guidance:
|
| 591 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 592 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
| 593 |
+
|
| 594 |
+
# 4. Prepare latent variables
|
| 595 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 596 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 597 |
+
batch_size * num_images_per_prompt,
|
| 598 |
+
num_channels_latents,
|
| 599 |
+
height,
|
| 600 |
+
width,
|
| 601 |
+
prompt_embeds.dtype,
|
| 602 |
+
negative_prompt_embeds.dtype,
|
| 603 |
+
device,
|
| 604 |
+
generator,
|
| 605 |
+
latents,
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
# 5. Prepare timesteps
|
| 609 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 610 |
+
image_seq_len = latents.shape[1]
|
| 611 |
+
mu = calculate_timestep_shift(image_seq_len)
|
| 612 |
+
timesteps, num_inference_steps = prepare_timesteps(
|
| 613 |
+
self.scheduler,
|
| 614 |
+
num_inference_steps,
|
| 615 |
+
device,
|
| 616 |
+
timesteps,
|
| 617 |
+
sigmas,
|
| 618 |
+
mu=mu,
|
| 619 |
+
)
|
| 620 |
+
self._num_timesteps = len(timesteps)
|
| 621 |
+
|
| 622 |
+
# 6. Denoising loop
|
| 623 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 624 |
+
for i, t in enumerate(timesteps):
|
| 625 |
+
if self.interrupt:
|
| 626 |
+
continue
|
| 627 |
+
|
| 628 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 629 |
+
|
| 630 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
|
| 631 |
+
|
| 632 |
+
if self.transformer.config.guidance_embeds:
|
| 633 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
| 634 |
+
guidance = guidance.expand(latents.shape[0])
|
| 635 |
+
else:
|
| 636 |
+
guidance = None
|
| 637 |
+
|
| 638 |
+
noise_pred = self.transformer(
|
| 639 |
+
hidden_states=latent_model_input,
|
| 640 |
+
timestep=timestep / 1000,
|
| 641 |
+
guidance=guidance,
|
| 642 |
+
pooled_projections=pooled_prompt_embeds,
|
| 643 |
+
encoder_hidden_states=prompt_embeds,
|
| 644 |
+
txt_ids=text_ids,
|
| 645 |
+
img_ids=latent_image_ids,
|
| 646 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 647 |
+
return_dict=False,
|
| 648 |
+
)[0]
|
| 649 |
+
|
| 650 |
+
if self.do_classifier_free_guidance:
|
| 651 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 652 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 653 |
+
|
| 654 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 655 |
+
latents_dtype = latents.dtype
|
| 656 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 657 |
+
|
| 658 |
+
if latents.dtype != latents_dtype:
|
| 659 |
+
if torch.backends.mps.is_available():
|
| 660 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 661 |
+
latents = latents.to(latents_dtype)
|
| 662 |
+
|
| 663 |
+
# call the callback, if provided
|
| 664 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 665 |
+
progress_bar.update()
|
| 666 |
+
|
| 667 |
+
# Final image
|
| 668 |
+
return self._decode_latents_to_image(latents, height, width, output_type)
|
| 669 |
+
self.maybe_free_model_hooks()
|
| 670 |
+
torch.cuda.empty_cache()
|
| 671 |
+
|
| 672 |
+
def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
|
| 673 |
+
"""Decodes the given latents into an image."""
|
| 674 |
+
vae = vae or self.vae
|
| 675 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 676 |
+
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
| 677 |
+
image = vae.decode(latents, return_dict=False)[0]
|
| 678 |
+
return self.image_processor.postprocess(image, output_type=output_type)[0]
|