AlekseyCalvin's picture
Update app.py
beb1467 verified
raw
history blame
4.57 kB
import gradio as gr
import numpy as np
import spaces
import torch
import random
import time
from PIL import Image
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
from gradio_client import Client, handle_file
import os
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the 'waffles' environment variable as the access token
hf_token = os.getenv('waffles')
# Ensure the token is loaded correctly
if not hf_token:
raise ValueError("Hugging Face API token not found. Please set the 'waffles' environment variable.")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=hf_token).to(device)
@spaces.GPU(duration=300)
def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_scale=0.0, num_inference_steps=5, lora_model="AlekseyCalvin/RCA_Agitprop_Manufactory", progress=gr.Progress(track_tqdm=True)):
global pipe
# Load LoRA if specified
if lora_model:
try:
pipe.load_lora_weights(lora_model)
except Exception as e:
return None, seed, f"Failed to load LoRA model: {str(e)}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
try:
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
# Unload LoRA weights after generation
if lora_model:
pipe.unload_lora_weights()
return image, seed, "Image generated successfully."
except Exception as e:
return None, seed, f"Error during image generation: {str(e)}"
return image, seed
examples = [
"RCA style communist party poster with the words Ready for REVOLUTION? in large black consistent constructivist font alongside a red Soviet hammer and a red Soviet sickle over the background of planet earth, over the North American continent",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# RCA Agitprop Manufactory""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch()