AlekseyCalvin commited on
Commit
4d4bd5b
·
verified ·
1 Parent(s): c0aa0ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -14
app.py CHANGED
@@ -6,10 +6,13 @@ import random
6
  import time
7
  from PIL import Image
8
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
9
- from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
10
  from huggingface_hub import hf_hub_download
11
  from gradio_client import Client, handle_file
12
  import os
 
 
 
13
 
14
  dtype = torch.bfloat16
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -24,9 +27,9 @@ if not hf_token:
24
  MAX_SEED = np.iinfo(np.int32).max
25
  MAX_IMAGE_SIZE = 2048
26
 
27
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=hf_token).to(device)
28
 
29
- @spaces.GPU()
30
  def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_scale=0.0, num_inference_steps=5, lora_model="AlekseyCalvin/RCA_Agitprop_Manufactory", progress=gr.Progress(track_tqdm=True)):
31
  global pipe
32
 
@@ -55,18 +58,39 @@ def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_
55
  if lora_model:
56
  pipe.unload_lora_weights()
57
 
58
- return image, seed, "Image generated successfully."
59
  except Exception as e:
60
  return None, seed, f"Error during image generation: {str(e)}"
61
 
62
 
63
- return image, seed
64
 
65
 
66
  examples = [
67
  "RCA style communist party poster with the words Ready for REVOLUTION? in large black consistent constructivist font alongside a red Soviet hammer and a red Soviet sickle over the background of planet earth, over the North American continent",
68
  ]
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  css="""
71
  #col-container {
72
  margin: 0 auto;
@@ -74,7 +98,8 @@ css="""
74
  }
75
  """
76
 
77
- with gr.Blocks(css=css) as demo:
 
78
 
79
  with gr.Column(elem_id="col-container"):
80
  gr.Markdown(f"""# RCA Agitprop Manufactory: pre-phrase prompts with 'RCA style' to activate custom model """)
@@ -84,14 +109,14 @@ with gr.Blocks(css=css) as demo:
84
  prompt = gr.Text(
85
  label="Prompt",
86
  show_label=False,
87
- max_lines=3,
88
  placeholder="RCA style communist poster of ",
89
  container=False,
90
  )
91
 
92
  run_button = gr.Button("Run", scale=0)
93
 
94
- result = gr.Image(label="Result", show_label=False)
95
 
96
  with gr.Accordion("Advanced Settings", open=True):
97
 
@@ -112,7 +137,7 @@ with gr.Blocks(css=css) as demo:
112
  minimum=256,
113
  maximum=MAX_IMAGE_SIZE,
114
  step=32,
115
- value=1360,
116
  )
117
 
118
  height = gr.Slider(
@@ -120,7 +145,7 @@ with gr.Blocks(css=css) as demo:
120
  minimum=256,
121
  maximum=MAX_IMAGE_SIZE,
122
  step=32,
123
- value=1360,
124
  )
125
 
126
  with gr.Row():
@@ -131,14 +156,14 @@ with gr.Blocks(css=css) as demo:
131
  minimum=1,
132
  maximum=50,
133
  step=1,
134
- value=4,
135
  )
136
 
137
  gr.Examples(
138
  examples = examples,
139
  fn = infer,
140
  inputs = [prompt],
141
- outputs = [result, seed],
142
  cache_examples="lazy"
143
  )
144
 
@@ -146,7 +171,7 @@ with gr.Blocks(css=css) as demo:
146
  triggers=[run_button.click, prompt.submit],
147
  fn = infer,
148
  inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
149
- outputs = [result, seed]
150
  )
151
 
152
- demo.launch()
 
6
  import time
7
  from PIL import Image
8
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
9
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, AutoProcessor, pipeline
10
  from huggingface_hub import hf_hub_download
11
  from gradio_client import Client, handle_file
12
  import os
13
+ import subprocess
14
+
15
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
16
 
17
  dtype = torch.bfloat16
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
27
  MAX_SEED = np.iinfo(np.int32).max
28
  MAX_IMAGE_SIZE = 2048
29
 
30
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=hf_token).to(device)
31
 
32
+ @spaces.GPU(duration=60)
33
  def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_scale=0.0, num_inference_steps=5, lora_model="AlekseyCalvin/RCA_Agitprop_Manufactory", progress=gr.Progress(track_tqdm=True)):
34
  global pipe
35
 
 
58
  if lora_model:
59
  pipe.unload_lora_weights()
60
 
61
+ return image, prompt, seed, "Image generated successfully."
62
  except Exception as e:
63
  return None, seed, f"Error during image generation: {str(e)}"
64
 
65
 
66
+ return image, prompt, seed
67
 
68
 
69
  examples = [
70
  "RCA style communist party poster with the words Ready for REVOLUTION? in large black consistent constructivist font alongside a red Soviet hammer and a red Soviet sickle over the background of planet earth, over the North American continent",
71
  ]
72
 
73
+ custom_css = """
74
+ #col-container {
75
+ margin: 0 auto;
76
+ max-width: 520px;
77
+ }
78
+ .input-group, .output-group {
79
+ border: 1px solid #eb3109;
80
+ border-radius: 10px;
81
+ padding: 20px;
82
+ margin-bottom: 20px;
83
+ background-color: #f9f9f9;
84
+ }
85
+ .submit-btn {
86
+ background-color: #2980b9 !important;
87
+ color: white !important;
88
+ }
89
+ .submit-btn:hover {
90
+ background-color: #3498db !important;
91
+ }
92
+ """
93
+
94
  css="""
95
  #col-container {
96
  margin: 0 auto;
 
98
  }
99
  """
100
 
101
+ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="red", secondary_hue="gray")) as demo:
102
+ gr.HTML(title)
103
 
104
  with gr.Column(elem_id="col-container"):
105
  gr.Markdown(f"""# RCA Agitprop Manufactory: pre-phrase prompts with 'RCA style' to activate custom model """)
 
109
  prompt = gr.Text(
110
  label="Prompt",
111
  show_label=False,
112
+ max_lines=2,
113
  placeholder="RCA style communist poster of ",
114
  container=False,
115
  )
116
 
117
  run_button = gr.Button("Run", scale=0)
118
 
119
+ output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
120
 
121
  with gr.Accordion("Advanced Settings", open=True):
122
 
 
137
  minimum=256,
138
  maximum=MAX_IMAGE_SIZE,
139
  step=32,
140
+ value=640,
141
  )
142
 
143
  height = gr.Slider(
 
145
  minimum=256,
146
  maximum=MAX_IMAGE_SIZE,
147
  step=32,
148
+ value=1024,
149
  )
150
 
151
  with gr.Row():
 
156
  minimum=1,
157
  maximum=50,
158
  step=1,
159
+ value=5,
160
  )
161
 
162
  gr.Examples(
163
  examples = examples,
164
  fn = infer,
165
  inputs = [prompt],
166
+ outputs = [output_image, seed],
167
  cache_examples="lazy"
168
  )
169
 
 
171
  triggers=[run_button.click, prompt.submit],
172
  fn = infer,
173
  inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
174
+ outputs = [output_image, seed]
175
  )
176
 
177
+ demo.launch(debug=True)